线性梯度Haralick纹理特征的标度规律。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2856
Sorinel A Oprisan, Ana Oprisan
{"title":"线性梯度Haralick纹理特征的标度规律。","authors":"Sorinel A Oprisan, Ana Oprisan","doi":"10.7717/peerj-cs.2856","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel analytical framework for understanding the relationship between the image gradients and the symmetries of the Gray Level Co-occurrence Matrix (GLCM). Analytical expression for four key features-sum average (SA), sum variance (SV), difference variance (DV), and entropy-were derived to capture their dependence on image's gray-level quantization (N<sub>g</sub>), the gradient magnitude (∇), and the displacement vector (d) through the corresponding GLCM. Scaling laws obtained from the exact analytical dependencies of Haralick features on N<sub>g</sub>, ∇ and |d| show that SA and DV scale linearly with N<sub>g</sub>, SV scales quadratically, and entropy follows a logarithmic trend. The scaling laws allow a consistent derivation of normalization factors that make Haralick features independent of the quantization scheme N<sub>g</sub>. Numerical simulations using synthetic one-dimensional gradients validated our theoretical predictions. This theoretical framework establishes a foundation for consistent derivation of analytic expressions and scaling laws for Haralick features. Such an approach would streamline texture analysis across datasets and imaging modalities, enhancing the portability and interpretability of Haralick features in machine learning and medical imaging applications.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2856"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192890/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scaling laws for Haralick texture features of linear gradients.\",\"authors\":\"Sorinel A Oprisan, Ana Oprisan\",\"doi\":\"10.7717/peerj-cs.2856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a novel analytical framework for understanding the relationship between the image gradients and the symmetries of the Gray Level Co-occurrence Matrix (GLCM). Analytical expression for four key features-sum average (SA), sum variance (SV), difference variance (DV), and entropy-were derived to capture their dependence on image's gray-level quantization (N<sub>g</sub>), the gradient magnitude (∇), and the displacement vector (d) through the corresponding GLCM. Scaling laws obtained from the exact analytical dependencies of Haralick features on N<sub>g</sub>, ∇ and |d| show that SA and DV scale linearly with N<sub>g</sub>, SV scales quadratically, and entropy follows a logarithmic trend. The scaling laws allow a consistent derivation of normalization factors that make Haralick features independent of the quantization scheme N<sub>g</sub>. Numerical simulations using synthetic one-dimensional gradients validated our theoretical predictions. This theoretical framework establishes a foundation for consistent derivation of analytic expressions and scaling laws for Haralick features. Such an approach would streamline texture analysis across datasets and imaging modalities, enhancing the portability and interpretability of Haralick features in machine learning and medical imaging applications.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2856\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2856\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2856","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的分析框架来理解图像梯度与灰度共生矩阵(GLCM)的对称性之间的关系。推导了四个关键特征-和平均(SA)、和方差(SV)、差方差(DV)和熵的解析表达式,通过相应的GLCM捕获它们对图像灰度量化(Ng)、梯度幅度(∇)和位移矢量(d)的依赖关系。由Haralick特征对Ng、∇和|d|的精确解析依赖关系得到的标度规律表明,SA和DV随Ng呈线性标度,SV呈二次标度,熵呈对数趋势。缩放定律允许一致的规范化因子推导,使哈拉里克特征独立于量化方案Ng。使用合成一维梯度的数值模拟验证了我们的理论预测。这一理论框架为Haralick特征的解析表达式和标度定律的一致推导奠定了基础。这种方法将简化跨数据集和成像模式的纹理分析,增强Haralick特征在机器学习和医学成像应用中的可移植性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling laws for Haralick texture features of linear gradients.

This study presents a novel analytical framework for understanding the relationship between the image gradients and the symmetries of the Gray Level Co-occurrence Matrix (GLCM). Analytical expression for four key features-sum average (SA), sum variance (SV), difference variance (DV), and entropy-were derived to capture their dependence on image's gray-level quantization (Ng), the gradient magnitude (∇), and the displacement vector (d) through the corresponding GLCM. Scaling laws obtained from the exact analytical dependencies of Haralick features on Ng, ∇ and |d| show that SA and DV scale linearly with Ng, SV scales quadratically, and entropy follows a logarithmic trend. The scaling laws allow a consistent derivation of normalization factors that make Haralick features independent of the quantization scheme Ng. Numerical simulations using synthetic one-dimensional gradients validated our theoretical predictions. This theoretical framework establishes a foundation for consistent derivation of analytic expressions and scaling laws for Haralick features. Such an approach would streamline texture analysis across datasets and imaging modalities, enhancing the portability and interpretability of Haralick features in machine learning and medical imaging applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信