RA-QoS:一个鲁棒的基于自编码器的QoS预测器,用于高度精确的web服务QoS预测。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-06-02 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2928
Shun Fu, Junnan Li, Lufeng Wang
{"title":"RA-QoS:一个鲁棒的基于自编码器的QoS预测器,用于高度精确的web服务QoS预测。","authors":"Shun Fu, Junnan Li, Lufeng Wang","doi":"10.7717/peerj-cs.2928","DOIUrl":null,"url":null,"abstract":"<p><p>Web services are fundamental for online service-oriented applications, where accurately predicting quality of service (QoS) is critical for recommending optimal services among multiple candidates. Since QoS data often contains noise-stemming from factors like remote user or service locations-current deep neural network (DNN)-based QoS predictors, which generally rely on L2-norm loss functions, face limitations in robustness due to sensitivity to outliers. To address this issue, we propose a novel robust autoencoder-based QoS predictor (RA-QoS) that leverages a hybrid loss function combining bias, training bias, L1-norm and L2-norm to build a robust Autoencoder. This hybrid approach allows RA-QoS to better handle noisy data, minimizing the impact of outliers and biases on prediction accuracy. The RA-QoS model further incorporates preprocessing and training biases, improving its adaptability to real-world QoS data. To evaluate the proposed RA-QoS predictor, extensive experiments are conducted on two real-world QoS datasets. The results demonstrate that our RA-QoS predictor exhibits superior robustness to outliers and higher accuracy in QoS prediction compared to the related state-of-the-art models.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2928"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193467/pdf/","citationCount":"0","resultStr":"{\"title\":\"RA-QoS: a robust autoencoder-based QoS predictor for highly accurate web service QoS prediction.\",\"authors\":\"Shun Fu, Junnan Li, Lufeng Wang\",\"doi\":\"10.7717/peerj-cs.2928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Web services are fundamental for online service-oriented applications, where accurately predicting quality of service (QoS) is critical for recommending optimal services among multiple candidates. Since QoS data often contains noise-stemming from factors like remote user or service locations-current deep neural network (DNN)-based QoS predictors, which generally rely on L2-norm loss functions, face limitations in robustness due to sensitivity to outliers. To address this issue, we propose a novel robust autoencoder-based QoS predictor (RA-QoS) that leverages a hybrid loss function combining bias, training bias, L1-norm and L2-norm to build a robust Autoencoder. This hybrid approach allows RA-QoS to better handle noisy data, minimizing the impact of outliers and biases on prediction accuracy. The RA-QoS model further incorporates preprocessing and training biases, improving its adaptability to real-world QoS data. To evaluate the proposed RA-QoS predictor, extensive experiments are conducted on two real-world QoS datasets. The results demonstrate that our RA-QoS predictor exhibits superior robustness to outliers and higher accuracy in QoS prediction compared to the related state-of-the-art models.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2928\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2928\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2928","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

Web服务是在线面向服务的应用程序的基础,在在线面向服务的应用程序中,准确预测服务质量(QoS)对于在多个候选服务中推荐最佳服务至关重要。由于QoS数据通常包含来自远程用户或服务位置等因素的噪声,当前基于深度神经网络(DNN)的QoS预测器通常依赖于l2范数损失函数,由于对异常值的敏感性,其鲁棒性受到限制。为了解决这个问题,我们提出了一种新的基于自编码器的鲁棒QoS预测器(RA-QoS),它利用组合偏差、训练偏差、l1范数和l2范数的混合损失函数来构建鲁棒自编码器。这种混合方法允许RA-QoS更好地处理噪声数据,最大限度地减少异常值和偏差对预测精度的影响。RA-QoS模型进一步融合了预处理和训练偏差,提高了其对实际QoS数据的适应性。为了评估提出的RA-QoS预测器,在两个真实的QoS数据集上进行了大量的实验。结果表明,与相关的最先进模型相比,我们的RA-QoS预测器对异常值具有优越的鲁棒性和更高的QoS预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RA-QoS: a robust autoencoder-based QoS predictor for highly accurate web service QoS prediction.

Web services are fundamental for online service-oriented applications, where accurately predicting quality of service (QoS) is critical for recommending optimal services among multiple candidates. Since QoS data often contains noise-stemming from factors like remote user or service locations-current deep neural network (DNN)-based QoS predictors, which generally rely on L2-norm loss functions, face limitations in robustness due to sensitivity to outliers. To address this issue, we propose a novel robust autoencoder-based QoS predictor (RA-QoS) that leverages a hybrid loss function combining bias, training bias, L1-norm and L2-norm to build a robust Autoencoder. This hybrid approach allows RA-QoS to better handle noisy data, minimizing the impact of outliers and biases on prediction accuracy. The RA-QoS model further incorporates preprocessing and training biases, improving its adaptability to real-world QoS data. To evaluate the proposed RA-QoS predictor, extensive experiments are conducted on two real-world QoS datasets. The results demonstrate that our RA-QoS predictor exhibits superior robustness to outliers and higher accuracy in QoS prediction compared to the related state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信