无监督静态主题模型突现检测能力评价。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-05-30 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2875
Xue Li, Ciro D Esposito, Paul Groth, Jonathan Sitruk, Balazs Szatmari, Nachoem Wijnberg
{"title":"无监督静态主题模型突现检测能力评价。","authors":"Xue Li, Ciro D Esposito, Paul Groth, Jonathan Sitruk, Balazs Szatmari, Nachoem Wijnberg","doi":"10.7717/peerj-cs.2875","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting emerging topics is crucial for understanding research trends, technological advancements, and shifts in public discourse. While unsupervised topic modeling techniques such as Latent Dirichlet allocation (LDA), BERTopic, and CoWords clustering are widely used for topic extraction, their ability to retrospectively detect emerging topics without relying on ground truth labels has not been systematically compared. This gap largely stems from the lack of a dedicated evaluation metric for measuring emergence detection. In this study, we introduce a quantitative evaluation metric to assess the effectiveness of topic models in detecting emerging topics. We evaluate three topic modeling approaches using both qualitative analysis and our proposed emergence detection metric. Our results indicate that, qualitatively, CoWords identifies emerging topics earlier than LDA and BERTopics. Quantitatively, our evaluation metric demonstrates that LDA achieves an average F1 score of 80.6% in emergence detection, outperforming BERTopic by 24.0%. These findings highlight the strengths and limitations of different topic models for emergence detection, while our proposed metric provides a robust framework for future benchmarking in this area.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2875"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192802/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of unsupervised static topic models' emergence detection ability.\",\"authors\":\"Xue Li, Ciro D Esposito, Paul Groth, Jonathan Sitruk, Balazs Szatmari, Nachoem Wijnberg\",\"doi\":\"10.7717/peerj-cs.2875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting emerging topics is crucial for understanding research trends, technological advancements, and shifts in public discourse. While unsupervised topic modeling techniques such as Latent Dirichlet allocation (LDA), BERTopic, and CoWords clustering are widely used for topic extraction, their ability to retrospectively detect emerging topics without relying on ground truth labels has not been systematically compared. This gap largely stems from the lack of a dedicated evaluation metric for measuring emergence detection. In this study, we introduce a quantitative evaluation metric to assess the effectiveness of topic models in detecting emerging topics. We evaluate three topic modeling approaches using both qualitative analysis and our proposed emergence detection metric. Our results indicate that, qualitatively, CoWords identifies emerging topics earlier than LDA and BERTopics. Quantitatively, our evaluation metric demonstrates that LDA achieves an average F1 score of 80.6% in emergence detection, outperforming BERTopic by 24.0%. These findings highlight the strengths and limitations of different topic models for emergence detection, while our proposed metric provides a robust framework for future benchmarking in this area.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2875\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192802/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2875\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2875","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

发现新兴主题对于理解研究趋势、技术进步和公共话语的转变至关重要。虽然诸如潜狄利克雷分配(LDA)、BERTopic和CoWords聚类等无监督主题建模技术被广泛用于主题提取,但它们在不依赖基础真值标签的情况下回顾性检测新主题的能力尚未得到系统的比较。这一差距很大程度上源于缺乏一个专门的评估指标来衡量紧急情况的检测。在本研究中,我们引入了一个定量评价指标来评估主题模型在检测新兴主题方面的有效性。我们使用定性分析和我们提出的出现检测度量来评估三种主题建模方法。我们的结果表明,从质量上讲,CoWords比LDA和BERTopics更早识别新兴主题。定量地,我们的评估指标表明,LDA在紧急情况检测方面的平均F1得分为80.6%,比BERTopic高出24.0%。这些发现突出了不同主题模型用于紧急情况检测的优势和局限性,而我们提出的度量标准为该领域的未来基准测试提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of unsupervised static topic models' emergence detection ability.

Detecting emerging topics is crucial for understanding research trends, technological advancements, and shifts in public discourse. While unsupervised topic modeling techniques such as Latent Dirichlet allocation (LDA), BERTopic, and CoWords clustering are widely used for topic extraction, their ability to retrospectively detect emerging topics without relying on ground truth labels has not been systematically compared. This gap largely stems from the lack of a dedicated evaluation metric for measuring emergence detection. In this study, we introduce a quantitative evaluation metric to assess the effectiveness of topic models in detecting emerging topics. We evaluate three topic modeling approaches using both qualitative analysis and our proposed emergence detection metric. Our results indicate that, qualitatively, CoWords identifies emerging topics earlier than LDA and BERTopics. Quantitatively, our evaluation metric demonstrates that LDA achieves an average F1 score of 80.6% in emergence detection, outperforming BERTopic by 24.0%. These findings highlight the strengths and limitations of different topic models for emergence detection, while our proposed metric provides a robust framework for future benchmarking in this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信