使用BERT和InceptionV3增强图书类型分类:图书馆的深度学习方法。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-06-05 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2934
Xinting Yang, Zehua Zhang
{"title":"使用BERT和InceptionV3增强图书类型分类:图书馆的深度学习方法。","authors":"Xinting Yang, Zehua Zhang","doi":"10.7717/peerj-cs.2934","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate book genre classification is essential for library organization, information retrieval, and personalized recommendations. Traditional classification methods, often reliant on manual categorization and metadata-based approaches, struggle with the complexities of hybrid genres and evolving literary trends. To address these limitations, this study proposes a hybrid deep learning model that integrates visual and textual features for enhanced genre classification. Specifically, we employ InceptionV3, an advanced convolutional neural network architecture, to extract visual features from book cover images and bidirectional encoder representations from transformers (BERT) to analyze textual data from book titles. A scaled dot-product attention mechanism is used to effectively fuse these multimodal features, dynamically weighting their contributions based on contextual relevance. Experimental results on the BookCover30 dataset demonstrate that our proposed model outperforms baseline approaches, achieving a balanced accuracy of 0.7951 and an F1-score of 0.7920, surpassing both standalone image- and text-based classifiers. This study highlights the potential of deep learning in improving automated genre classification, offering a scalable and adaptable solution for libraries and digital platforms. Future research may focus on expanding dataset diversity, optimizing computational efficiency, and addressing biases in classification models.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2934"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing book genre classification with BERT and InceptionV3: a deep learning approach for libraries.\",\"authors\":\"Xinting Yang, Zehua Zhang\",\"doi\":\"10.7717/peerj-cs.2934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate book genre classification is essential for library organization, information retrieval, and personalized recommendations. Traditional classification methods, often reliant on manual categorization and metadata-based approaches, struggle with the complexities of hybrid genres and evolving literary trends. To address these limitations, this study proposes a hybrid deep learning model that integrates visual and textual features for enhanced genre classification. Specifically, we employ InceptionV3, an advanced convolutional neural network architecture, to extract visual features from book cover images and bidirectional encoder representations from transformers (BERT) to analyze textual data from book titles. A scaled dot-product attention mechanism is used to effectively fuse these multimodal features, dynamically weighting their contributions based on contextual relevance. Experimental results on the BookCover30 dataset demonstrate that our proposed model outperforms baseline approaches, achieving a balanced accuracy of 0.7951 and an F1-score of 0.7920, surpassing both standalone image- and text-based classifiers. This study highlights the potential of deep learning in improving automated genre classification, offering a scalable and adaptable solution for libraries and digital platforms. Future research may focus on expanding dataset diversity, optimizing computational efficiency, and addressing biases in classification models.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2934\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2934\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2934","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

准确的图书类型分类对图书馆组织、信息检索和个性化推荐至关重要。传统的分类方法通常依赖于人工分类和基于元数据的方法,难以应对混合体裁和不断发展的文学趋势的复杂性。为了解决这些限制,本研究提出了一种混合深度学习模型,该模型集成了视觉和文本特征,以增强类型分类。具体来说,我们使用了InceptionV3,一种先进的卷积神经网络架构,从书籍封面图像中提取视觉特征,从变形器(BERT)中提取双向编码器表示来分析书籍标题的文本数据。采用尺度点积注意机制有效地融合这些多模态特征,根据上下文相关性动态加权它们的贡献。在BookCover30数据集上的实验结果表明,我们提出的模型优于基线方法,实现了0.7951的平衡精度和0.7920的f1分数,超过了独立的基于图像和基于文本的分类器。这项研究强调了深度学习在改进自动类型分类方面的潜力,为图书馆和数字平台提供了可扩展和适应性强的解决方案。未来的研究可能集中在扩展数据集多样性、优化计算效率和解决分类模型中的偏差上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing book genre classification with BERT and InceptionV3: a deep learning approach for libraries.

Accurate book genre classification is essential for library organization, information retrieval, and personalized recommendations. Traditional classification methods, often reliant on manual categorization and metadata-based approaches, struggle with the complexities of hybrid genres and evolving literary trends. To address these limitations, this study proposes a hybrid deep learning model that integrates visual and textual features for enhanced genre classification. Specifically, we employ InceptionV3, an advanced convolutional neural network architecture, to extract visual features from book cover images and bidirectional encoder representations from transformers (BERT) to analyze textual data from book titles. A scaled dot-product attention mechanism is used to effectively fuse these multimodal features, dynamically weighting their contributions based on contextual relevance. Experimental results on the BookCover30 dataset demonstrate that our proposed model outperforms baseline approaches, achieving a balanced accuracy of 0.7951 and an F1-score of 0.7920, surpassing both standalone image- and text-based classifiers. This study highlights the potential of deep learning in improving automated genre classification, offering a scalable and adaptable solution for libraries and digital platforms. Future research may focus on expanding dataset diversity, optimizing computational efficiency, and addressing biases in classification models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信