通过深度强化学习增强智能反射面后向散射的物理层安全性。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-06-09 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2902
Manzoor Ahmed, Touseef Hussain, Muhammad Shahwar, Feroz Khan, Muhammad Sheraz, Wali Ullah Khan, Teong Chee Chuah, It Ee Lee
{"title":"通过深度强化学习增强智能反射面后向散射的物理层安全性。","authors":"Manzoor Ahmed, Touseef Hussain, Muhammad Shahwar, Feroz Khan, Muhammad Sheraz, Wali Ullah Khan, Teong Chee Chuah, It Ee Lee","doi":"10.7717/peerj-cs.2902","DOIUrl":null,"url":null,"abstract":"<p><p>This article introduces a novel strategy for wireless communication security utilizing intelligent reflecting surfaces (IRS). The IRS is strategically deployed to mitigate jamming attacks and eavesdropper threats while improving signal reception for legitimate users (LUs) by redirecting jamming signals toward desired communication signals leveraging physical layer security (PLS). By integrating the IRS into the backscatter communication system, we enhance the overall secrecy rate of LU, by dynamically adjusting IRS reflection coefficients and active beamforming at the base station (BS). A design problem is formulated to jointly optimize IRS reflecting beamforming and BS active beamforming, considering time-varying channel conditions and desired secrecy rate requirements. We propose a novel approach based on deep reinforcement learning (DRL) named Deep-PLS. This approach aims to determine an optimal beamforming policy capable of thwarting eavesdroppers in evolving environmental conditions. Extensive simulation studies validate the efficacy of our proposed strategy, demonstrating superior performance compared to traditional IRS approaches, IRS backscattering-based anti-eavesdropping methods, and other benchmark strategies in terms of secrecy performance.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2902"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192987/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intelligent reflecting surface backscatter-enabled physical layer security enhancement <i>via</i> deep reinforcement learning.\",\"authors\":\"Manzoor Ahmed, Touseef Hussain, Muhammad Shahwar, Feroz Khan, Muhammad Sheraz, Wali Ullah Khan, Teong Chee Chuah, It Ee Lee\",\"doi\":\"10.7717/peerj-cs.2902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article introduces a novel strategy for wireless communication security utilizing intelligent reflecting surfaces (IRS). The IRS is strategically deployed to mitigate jamming attacks and eavesdropper threats while improving signal reception for legitimate users (LUs) by redirecting jamming signals toward desired communication signals leveraging physical layer security (PLS). By integrating the IRS into the backscatter communication system, we enhance the overall secrecy rate of LU, by dynamically adjusting IRS reflection coefficients and active beamforming at the base station (BS). A design problem is formulated to jointly optimize IRS reflecting beamforming and BS active beamforming, considering time-varying channel conditions and desired secrecy rate requirements. We propose a novel approach based on deep reinforcement learning (DRL) named Deep-PLS. This approach aims to determine an optimal beamforming policy capable of thwarting eavesdroppers in evolving environmental conditions. Extensive simulation studies validate the efficacy of our proposed strategy, demonstrating superior performance compared to traditional IRS approaches, IRS backscattering-based anti-eavesdropping methods, and other benchmark strategies in terms of secrecy performance.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2902\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192987/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2902\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2902","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用智能反射面(IRS)实现无线通信安全的新策略。IRS的战略部署是为了减轻干扰攻击和窃听威胁,同时通过利用物理层安全(PLS)将干扰信号重定向到所需的通信信号来改善合法用户(lu)的信号接收。将IRS集成到后向散射通信系统中,通过动态调整IRS反射系数和基站的主动波束形成,提高了LU的总体保密率。考虑时变信道条件和期望的保密率要求,提出了IRS反射波束形成和BS有源波束形成联合优化的设计问题。我们提出了一种基于深度强化学习(DRL)的新方法,称为deep - pls。该方法旨在确定在不断变化的环境条件下能够阻止窃听者的最佳波束形成策略。大量的仿真研究验证了我们提出的策略的有效性,与传统的IRS方法、基于IRS反向散射的反窃听方法和其他基准策略相比,在保密性能方面表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent reflecting surface backscatter-enabled physical layer security enhancement via deep reinforcement learning.

This article introduces a novel strategy for wireless communication security utilizing intelligent reflecting surfaces (IRS). The IRS is strategically deployed to mitigate jamming attacks and eavesdropper threats while improving signal reception for legitimate users (LUs) by redirecting jamming signals toward desired communication signals leveraging physical layer security (PLS). By integrating the IRS into the backscatter communication system, we enhance the overall secrecy rate of LU, by dynamically adjusting IRS reflection coefficients and active beamforming at the base station (BS). A design problem is formulated to jointly optimize IRS reflecting beamforming and BS active beamforming, considering time-varying channel conditions and desired secrecy rate requirements. We propose a novel approach based on deep reinforcement learning (DRL) named Deep-PLS. This approach aims to determine an optimal beamforming policy capable of thwarting eavesdroppers in evolving environmental conditions. Extensive simulation studies validate the efficacy of our proposed strategy, demonstrating superior performance compared to traditional IRS approaches, IRS backscattering-based anti-eavesdropping methods, and other benchmark strategies in terms of secrecy performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信