{"title":"基于改进快速探索随机树的AGV路径优化方法。","authors":"Zhigang Ren, Anjiang Cai, Feilong Xu","doi":"10.7717/peerj-cs.2915","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the issues of low computational efficiency, slow convergence speed, curvy paths, and the tendency to fall into local optima in rapidly-exploring random tree (RRT) algorithms for automated guided vehicle (AGV) path planning, this article proposes an improved RRT algorithm that combines adaptive step-size optimization with K-dimensional tree (KD-Tree) based fast nearest neighbor search. Firstly, an adaptive step-size optimization strategy is introduced to dynamically adjust the step size during node searches, improving both the planning quality and computational efficiency of the algorithm. Secondly, the KD-Tree nearest neighbor search method is employed to accelerate node searching and reduce the time cost of path planning. Finally, a cubic spline interpolation function is applied to smooth the optimal path, further enhancing the planning quality. Experimental results show that the improved RRT algorithm significantly outperforms traditional RRT, RRT*, and Informed-RRT* in terms of path length, planning time, and path smoothness. Specifically, the average path length is reduced by 164.33 m, and the average search time is shortened by 3.3 s, making it more suitable for AGV path planning in practical applications.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2915"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated guided vehicle (AGV) path optimization method based on improved rapidly-exploring random trees.\",\"authors\":\"Zhigang Ren, Anjiang Cai, Feilong Xu\",\"doi\":\"10.7717/peerj-cs.2915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the issues of low computational efficiency, slow convergence speed, curvy paths, and the tendency to fall into local optima in rapidly-exploring random tree (RRT) algorithms for automated guided vehicle (AGV) path planning, this article proposes an improved RRT algorithm that combines adaptive step-size optimization with K-dimensional tree (KD-Tree) based fast nearest neighbor search. Firstly, an adaptive step-size optimization strategy is introduced to dynamically adjust the step size during node searches, improving both the planning quality and computational efficiency of the algorithm. Secondly, the KD-Tree nearest neighbor search method is employed to accelerate node searching and reduce the time cost of path planning. Finally, a cubic spline interpolation function is applied to smooth the optimal path, further enhancing the planning quality. Experimental results show that the improved RRT algorithm significantly outperforms traditional RRT, RRT*, and Informed-RRT* in terms of path length, planning time, and path smoothness. Specifically, the average path length is reduced by 164.33 m, and the average search time is shortened by 3.3 s, making it more suitable for AGV path planning in practical applications.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2915\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2915\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2915","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Automated guided vehicle (AGV) path optimization method based on improved rapidly-exploring random trees.
In response to the issues of low computational efficiency, slow convergence speed, curvy paths, and the tendency to fall into local optima in rapidly-exploring random tree (RRT) algorithms for automated guided vehicle (AGV) path planning, this article proposes an improved RRT algorithm that combines adaptive step-size optimization with K-dimensional tree (KD-Tree) based fast nearest neighbor search. Firstly, an adaptive step-size optimization strategy is introduced to dynamically adjust the step size during node searches, improving both the planning quality and computational efficiency of the algorithm. Secondly, the KD-Tree nearest neighbor search method is employed to accelerate node searching and reduce the time cost of path planning. Finally, a cubic spline interpolation function is applied to smooth the optimal path, further enhancing the planning quality. Experimental results show that the improved RRT algorithm significantly outperforms traditional RRT, RRT*, and Informed-RRT* in terms of path length, planning time, and path smoothness. Specifically, the average path length is reduced by 164.33 m, and the average search time is shortened by 3.3 s, making it more suitable for AGV path planning in practical applications.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.