基于深度学习的动态跨域双注意网络的面部表情识别框架。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-05-09 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2866
Ahmed Omar Alzahrani, Ahmed Mohammed Alghamdi, M Usman Ashraf, Iqra Ilyas, Nadeem Sarwar, Abdulrahman Alzahrani, Alaa Abdul Salam Alarood
{"title":"基于深度学习的动态跨域双注意网络的面部表情识别框架。","authors":"Ahmed Omar Alzahrani, Ahmed Mohammed Alghamdi, M Usman Ashraf, Iqra Ilyas, Nadeem Sarwar, Abdulrahman Alzahrani, Alaa Abdul Salam Alarood","doi":"10.7717/peerj-cs.2866","DOIUrl":null,"url":null,"abstract":"<p><p>Variations in domain targets have recently posed significant challenges for facial expression recognition tasks, primarily due to domain shifts. Current methods focus largely on global feature adoption to achieve domain-invariant learning; however, transferring local features across diverse domains remains an ongoing challenge. Additionally, during training on target datasets, these methods often suffer from reduced feature representation in the target domain due to insufficient discriminative supervision. To tackle these challenges, we propose a dynamic cross-domain dual attention network for facial expression recognition. Our model is specifically designed to learn domain-invariant features through separate modules for global and local adversarial learning. We also introduce a semantic-aware module to generate pseudo-labels, which computes semantic labels from both global and local features. We assess our model's effectiveness through extensive experiments on the Real-world Affective Faces Database (RAF-DB), FER-PLUS, AffectNet, Expression in the Wild (ExpW), SFEW 2.0, and Japanese Female Facial Expression (JAFFE) datasets. The results demonstrate that our scheme outperforms the existing state-of-the-art methods by attaining recognition accuracies 93.18, 92.35, 82.13, 78.37, 72.47, 70.68 respectively.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2866"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192681/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel facial expression recognition framework using deep learning based dynamic cross-domain dual attention network.\",\"authors\":\"Ahmed Omar Alzahrani, Ahmed Mohammed Alghamdi, M Usman Ashraf, Iqra Ilyas, Nadeem Sarwar, Abdulrahman Alzahrani, Alaa Abdul Salam Alarood\",\"doi\":\"10.7717/peerj-cs.2866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variations in domain targets have recently posed significant challenges for facial expression recognition tasks, primarily due to domain shifts. Current methods focus largely on global feature adoption to achieve domain-invariant learning; however, transferring local features across diverse domains remains an ongoing challenge. Additionally, during training on target datasets, these methods often suffer from reduced feature representation in the target domain due to insufficient discriminative supervision. To tackle these challenges, we propose a dynamic cross-domain dual attention network for facial expression recognition. Our model is specifically designed to learn domain-invariant features through separate modules for global and local adversarial learning. We also introduce a semantic-aware module to generate pseudo-labels, which computes semantic labels from both global and local features. We assess our model's effectiveness through extensive experiments on the Real-world Affective Faces Database (RAF-DB), FER-PLUS, AffectNet, Expression in the Wild (ExpW), SFEW 2.0, and Japanese Female Facial Expression (JAFFE) datasets. The results demonstrate that our scheme outperforms the existing state-of-the-art methods by attaining recognition accuracies 93.18, 92.35, 82.13, 78.37, 72.47, 70.68 respectively.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"11 \",\"pages\":\"e2866\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2866\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2866","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

领域目标的变化最近对面部表情识别任务提出了重大挑战,主要是由于领域的变化。目前的方法主要集中在采用全局特征来实现域不变学习;然而,在不同领域之间转移局部特征仍然是一个持续的挑战。此外,在目标数据集的训练过程中,这些方法往往会由于缺乏判别性监督而导致目标域的特征表示减少。为了解决这些问题,我们提出了一个动态的跨域双注意网络用于面部表情识别。我们的模型专门设计用于通过单独的模块来学习域不变特征,用于全局和局部对抗学习。我们还引入了一个语义感知模块来生成伪标签,该模块从全局和局部特征中计算语义标签。我们通过在真实世界情感面部数据库(RAF-DB)、FER-PLUS、AffectNet、野外表达(ExpW)、SFEW 2.0和日本女性面部表情(JAFFE)数据集上的大量实验来评估我们的模型的有效性。结果表明,该方法的识别准确率分别为93.18、92.35、82.13、78.37、72.47、70.68,优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel facial expression recognition framework using deep learning based dynamic cross-domain dual attention network.

Variations in domain targets have recently posed significant challenges for facial expression recognition tasks, primarily due to domain shifts. Current methods focus largely on global feature adoption to achieve domain-invariant learning; however, transferring local features across diverse domains remains an ongoing challenge. Additionally, during training on target datasets, these methods often suffer from reduced feature representation in the target domain due to insufficient discriminative supervision. To tackle these challenges, we propose a dynamic cross-domain dual attention network for facial expression recognition. Our model is specifically designed to learn domain-invariant features through separate modules for global and local adversarial learning. We also introduce a semantic-aware module to generate pseudo-labels, which computes semantic labels from both global and local features. We assess our model's effectiveness through extensive experiments on the Real-world Affective Faces Database (RAF-DB), FER-PLUS, AffectNet, Expression in the Wild (ExpW), SFEW 2.0, and Japanese Female Facial Expression (JAFFE) datasets. The results demonstrate that our scheme outperforms the existing state-of-the-art methods by attaining recognition accuracies 93.18, 92.35, 82.13, 78.37, 72.47, 70.68 respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信