Chuanliang Liu, Xinyi Lin, Min Xu, Zhao Zheng, Zhenghao Wang, Xin Huang, Feihua Wu, Guoyong Liu, Weijie Liu, Changlian Peng, Yan Guo, Yixiong Zheng, Caiji Gao, Wenjin Shen, Hongbo Li
{"title":"拟南芥ESCRT组分FYVE4通过加强SOS1-SOS2相互作用调节盐胁迫响应。","authors":"Chuanliang Liu, Xinyi Lin, Min Xu, Zhao Zheng, Zhenghao Wang, Xin Huang, Feihua Wu, Guoyong Liu, Weijie Liu, Changlian Peng, Yan Guo, Yixiong Zheng, Caiji Gao, Wenjin Shen, Hongbo Li","doi":"10.1016/j.xplc.2025.101428","DOIUrl":null,"url":null,"abstract":"<p><p>The plant-specific FYVE-domain-containing protein FYVE4, a component of the endosomal sorting complex required for transport III (ESCRT-III), participates in membrane protein sorting. However, the mechanism by which FYVE4 coordinates plant growth responses to environmental stress remains unclear. In this study, we reveal a novel function of FYVE4 in positively regulating plant salt resistance by modulating the Salt Overly Sensitive (SOS) signaling pathway. FYVE4 enhances SOS1 phosphorylation by promoting SOS1-SOS2 interactions during salt stress. Loss of FYVE4 reduces the SOS1-SOS2 association, leading to decreased SOS1 phosphorylation and increased plant sensitivity to salt stress. Notably, overexpression of SOS1 does not rescue the salt-sensitive phenotype of fyve4-1, whereas SOS2 overexpression does. In summary, our findings highlight the critical role of FYVE4 in promoting SOS1-SOS2 interactions to mitigate salt stress and reveal a previously unrecognized function of FYVE4 in abiotic stress responses, extending beyond its established role in membrane trafficking regulation.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101428"},"PeriodicalIF":11.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447447/pdf/","citationCount":"0","resultStr":"{\"title\":\"The ESCRT component FYVE4 modulates salt-stress response by strengthening the SOS1-SOS2 interaction in Arabidopsis.\",\"authors\":\"Chuanliang Liu, Xinyi Lin, Min Xu, Zhao Zheng, Zhenghao Wang, Xin Huang, Feihua Wu, Guoyong Liu, Weijie Liu, Changlian Peng, Yan Guo, Yixiong Zheng, Caiji Gao, Wenjin Shen, Hongbo Li\",\"doi\":\"10.1016/j.xplc.2025.101428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The plant-specific FYVE-domain-containing protein FYVE4, a component of the endosomal sorting complex required for transport III (ESCRT-III), participates in membrane protein sorting. However, the mechanism by which FYVE4 coordinates plant growth responses to environmental stress remains unclear. In this study, we reveal a novel function of FYVE4 in positively regulating plant salt resistance by modulating the Salt Overly Sensitive (SOS) signaling pathway. FYVE4 enhances SOS1 phosphorylation by promoting SOS1-SOS2 interactions during salt stress. Loss of FYVE4 reduces the SOS1-SOS2 association, leading to decreased SOS1 phosphorylation and increased plant sensitivity to salt stress. Notably, overexpression of SOS1 does not rescue the salt-sensitive phenotype of fyve4-1, whereas SOS2 overexpression does. In summary, our findings highlight the critical role of FYVE4 in promoting SOS1-SOS2 interactions to mitigate salt stress and reveal a previously unrecognized function of FYVE4 in abiotic stress responses, extending beyond its established role in membrane trafficking regulation.</p>\",\"PeriodicalId\":52373,\"journal\":{\"name\":\"Plant Communications\",\"volume\":\" \",\"pages\":\"101428\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447447/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xplc.2025.101428\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101428","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The ESCRT component FYVE4 modulates salt-stress response by strengthening the SOS1-SOS2 interaction in Arabidopsis.
The plant-specific FYVE-domain-containing protein FYVE4, a component of the endosomal sorting complex required for transport III (ESCRT-III), participates in membrane protein sorting. However, the mechanism by which FYVE4 coordinates plant growth responses to environmental stress remains unclear. In this study, we reveal a novel function of FYVE4 in positively regulating plant salt resistance by modulating the Salt Overly Sensitive (SOS) signaling pathway. FYVE4 enhances SOS1 phosphorylation by promoting SOS1-SOS2 interactions during salt stress. Loss of FYVE4 reduces the SOS1-SOS2 association, leading to decreased SOS1 phosphorylation and increased plant sensitivity to salt stress. Notably, overexpression of SOS1 does not rescue the salt-sensitive phenotype of fyve4-1, whereas SOS2 overexpression does. In summary, our findings highlight the critical role of FYVE4 in promoting SOS1-SOS2 interactions to mitigate salt stress and reveal a previously unrecognized function of FYVE4 in abiotic stress responses, extending beyond its established role in membrane trafficking regulation.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.