[结合接收加权键值架构和球面几何特征的甲状腺结节分割方法]。

Q4 Medicine
Licheng Zhu, Guohui Wei
{"title":"[结合接收加权键值架构和球面几何特征的甲状腺结节分割方法]。","authors":"Licheng Zhu, Guohui Wei","doi":"10.7507/1001-5515.202412009","DOIUrl":null,"url":null,"abstract":"<p><p>To address the high computational complexity of the Transformer in the segmentation of ultrasound thyroid nodules and the loss of image details or omission of key spatial information caused by traditional image sampling techniques when dealing with high-resolution, complex texture or uneven density two-dimensional ultrasound images, this paper proposes a thyroid nodule segmentation method that integrates the receiving weighted key-value (RWKV) architecture and spherical geometry feature (SGF) sampling technology. This method effectively captures the details of adjacent regions through two-dimensional offset prediction and pixel-level sampling position adjustment, achieving precise segmentation. Additionally, this study introduces a patch attention module (PAM) to optimize the decoder feature map using a regional cross-attention mechanism, enabling it to focus more precisely on the high-resolution features of the encoder. Experiments on the thyroid nodule segmentation dataset (TN3K) and the digital database for thyroid images (DDTI) show that the proposed method achieves dice similarity coefficients (DSC) of 87.24% and 80.79% respectively, outperforming existing models while maintaining a lower computational complexity. This approach may provide an efficient solution for the precise segmentation of thyroid nodules.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 3","pages":"567-574"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236226/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Thyroid nodule segmentation method integrating receiving weighted key-value architecture and spherical geometric features].\",\"authors\":\"Licheng Zhu, Guohui Wei\",\"doi\":\"10.7507/1001-5515.202412009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the high computational complexity of the Transformer in the segmentation of ultrasound thyroid nodules and the loss of image details or omission of key spatial information caused by traditional image sampling techniques when dealing with high-resolution, complex texture or uneven density two-dimensional ultrasound images, this paper proposes a thyroid nodule segmentation method that integrates the receiving weighted key-value (RWKV) architecture and spherical geometry feature (SGF) sampling technology. This method effectively captures the details of adjacent regions through two-dimensional offset prediction and pixel-level sampling position adjustment, achieving precise segmentation. Additionally, this study introduces a patch attention module (PAM) to optimize the decoder feature map using a regional cross-attention mechanism, enabling it to focus more precisely on the high-resolution features of the encoder. Experiments on the thyroid nodule segmentation dataset (TN3K) and the digital database for thyroid images (DDTI) show that the proposed method achieves dice similarity coefficients (DSC) of 87.24% and 80.79% respectively, outperforming existing models while maintaining a lower computational complexity. This approach may provide an efficient solution for the precise segmentation of thyroid nodules.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"42 3\",\"pages\":\"567-574\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202412009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202412009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

针对Transformer在超声甲状腺结节分割中计算复杂度高,以及传统图像采样技术在处理高分辨率、复杂纹理或密度不均的二维超声图像时造成的图像细节丢失或关键空间信息遗漏等问题,提出了一种结合接收加权键值(RWKV)架构和球面几何特征(SGF)采样技术的甲状腺结节分割方法。该方法通过二维偏移量预测和像素级采样位置调整,有效捕获相邻区域的细节,实现精确分割。此外,本研究引入了一个补丁注意模块(PAM),利用区域交叉注意机制优化解码器特征映射,使其能够更精确地关注编码器的高分辨率特征。在甲状腺结节分割数据集(TN3K)和甲状腺图像数字数据库(DDTI)上的实验表明,该方法的骰子相似系数(DSC)分别达到87.24%和80.79%,在保持较低计算复杂度的同时,优于现有模型。该方法可为甲状腺结节的精确分割提供有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Thyroid nodule segmentation method integrating receiving weighted key-value architecture and spherical geometric features].

To address the high computational complexity of the Transformer in the segmentation of ultrasound thyroid nodules and the loss of image details or omission of key spatial information caused by traditional image sampling techniques when dealing with high-resolution, complex texture or uneven density two-dimensional ultrasound images, this paper proposes a thyroid nodule segmentation method that integrates the receiving weighted key-value (RWKV) architecture and spherical geometry feature (SGF) sampling technology. This method effectively captures the details of adjacent regions through two-dimensional offset prediction and pixel-level sampling position adjustment, achieving precise segmentation. Additionally, this study introduces a patch attention module (PAM) to optimize the decoder feature map using a regional cross-attention mechanism, enabling it to focus more precisely on the high-resolution features of the encoder. Experiments on the thyroid nodule segmentation dataset (TN3K) and the digital database for thyroid images (DDTI) show that the proposed method achieves dice similarity coefficients (DSC) of 87.24% and 80.79% respectively, outperforming existing models while maintaining a lower computational complexity. This approach may provide an efficient solution for the precise segmentation of thyroid nodules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信