KIAA1429和AlkB同源物5通过n6 -甲基腺苷依赖的Sonic Hedgehog信号调节膀胱癌的进展。

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhimin Jiao, Xiaowu Liu, Xiaoliang Yuan, Xugang Wang, Qinyu Xu, Haoran Wu
{"title":"KIAA1429和AlkB同源物5通过n6 -甲基腺苷依赖的Sonic Hedgehog信号调节膀胱癌的进展。","authors":"Zhimin Jiao, Xiaowu Liu, Xiaoliang Yuan, Xugang Wang, Qinyu Xu, Haoran Wu","doi":"10.1002/mc.70004","DOIUrl":null,"url":null,"abstract":"<p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification plays a pivotal role in cancer progression, yet its regulatory mechanisms in bladder cancer (BCa) remain poorly understood. This study investigates the functions of two key m<sup>6</sup>A regulators-α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) and KIAA1429-in modulating BCa cell behavior. Expression levels of ALKBH5, KIAA1429, and Sonic Hedgehog (SHH) were examined in BCa tissues and adjacent normal tissues. Functional assays, including methylated RNA immunoprecipitation-quantitative PCR (MeRIP-qPCR), RNA immunoprecipitation (RIP), and RNA stability assessments, were performed in J82 BCa cells to explore the underlying mechanisms. Results revealed that KIAA1429 was significantly upregulated in BCa and promoted cell proliferation, migration, and invasion by enhancing m<sup>6</sup>A modification and stabilizing SHH mRNA, leading to activation of the Hedgehog signaling pathway. In contrast, ALKBH5, which was downregulated in BCa, acted as an m<sup>6</sup>A demethylase that destabilized SHH mRNA and attenuated Hedgehog pathway activity, thereby counteracting the oncogenic effects of KIAA1429. Moreover, overexpression of SHH reversed the inhibitory effects induced by KIAA1429 knockdown, confirming its role as a downstream effector. In conclusion, ALKBH5 and KIAA1429 exert opposing regulatory effects on BCa progression via m<sup>6</sup>A-mediated modulation of SHH expression and Hedgehog signaling. These findings highlight SHH mRNA methylation as a central mechanism in BCa malignancy and identify ALKBH5 and KIAA1429 as potential therapeutic targets.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KIAA1429 and AlkB Homolog 5 Regulate Bladder Cancer Progression via N<sup>6</sup>-Methyladenosine-Dependent Modulation of Sonic Hedgehog Signaling.\",\"authors\":\"Zhimin Jiao, Xiaowu Liu, Xiaoliang Yuan, Xugang Wang, Qinyu Xu, Haoran Wu\",\"doi\":\"10.1002/mc.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification plays a pivotal role in cancer progression, yet its regulatory mechanisms in bladder cancer (BCa) remain poorly understood. This study investigates the functions of two key m<sup>6</sup>A regulators-α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) and KIAA1429-in modulating BCa cell behavior. Expression levels of ALKBH5, KIAA1429, and Sonic Hedgehog (SHH) were examined in BCa tissues and adjacent normal tissues. Functional assays, including methylated RNA immunoprecipitation-quantitative PCR (MeRIP-qPCR), RNA immunoprecipitation (RIP), and RNA stability assessments, were performed in J82 BCa cells to explore the underlying mechanisms. Results revealed that KIAA1429 was significantly upregulated in BCa and promoted cell proliferation, migration, and invasion by enhancing m<sup>6</sup>A modification and stabilizing SHH mRNA, leading to activation of the Hedgehog signaling pathway. In contrast, ALKBH5, which was downregulated in BCa, acted as an m<sup>6</sup>A demethylase that destabilized SHH mRNA and attenuated Hedgehog pathway activity, thereby counteracting the oncogenic effects of KIAA1429. Moreover, overexpression of SHH reversed the inhibitory effects induced by KIAA1429 knockdown, confirming its role as a downstream effector. In conclusion, ALKBH5 and KIAA1429 exert opposing regulatory effects on BCa progression via m<sup>6</sup>A-mediated modulation of SHH expression and Hedgehog signaling. These findings highlight SHH mRNA methylation as a central mechanism in BCa malignancy and identify ALKBH5 and KIAA1429 as potential therapeutic targets.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.70004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.70004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

n6 -甲基腺苷(m6A)修饰在癌症进展中起关键作用,但其在膀胱癌(BCa)中的调节机制尚不清楚。本研究探讨了两个关键的m6A调节因子α-酮戊二酸依赖性双加氧酶alkB同源物5 (ALKBH5)和kiaa1429在调节BCa细胞行为中的功能。在BCa组织和邻近正常组织中检测ALKBH5、KIAA1429和Sonic Hedgehog (SHH)的表达水平。在J82 BCa细胞中进行功能分析,包括甲基化RNA免疫沉淀定量PCR (MeRIP-qPCR)、RNA免疫沉淀(RIP)和RNA稳定性评估,以探索潜在的机制。结果显示,KIAA1429在BCa中显著上调,通过增强m6A修饰和稳定SHH mRNA,促进细胞增殖、迁移和侵袭,从而激活Hedgehog信号通路。相比之下,在BCa中下调的ALKBH5作为m6A去甲基化酶,破坏SHH mRNA的稳定性,减弱Hedgehog通路的活性,从而抵消KIAA1429的致癌作用。此外,SHH的过表达逆转了KIAA1429敲低诱导的抑制作用,证实了其作为下游效应物的作用。综上所述,ALKBH5和KIAA1429通过m6a介导的SHH表达和Hedgehog信号的调节对BCa的进展发挥相反的调节作用。这些发现强调SHH mRNA甲基化是BCa恶性肿瘤的中心机制,并确定ALKBH5和KIAA1429是潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KIAA1429 and AlkB Homolog 5 Regulate Bladder Cancer Progression via N6-Methyladenosine-Dependent Modulation of Sonic Hedgehog Signaling.

N6-methyladenosine (m6A) modification plays a pivotal role in cancer progression, yet its regulatory mechanisms in bladder cancer (BCa) remain poorly understood. This study investigates the functions of two key m6A regulators-α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) and KIAA1429-in modulating BCa cell behavior. Expression levels of ALKBH5, KIAA1429, and Sonic Hedgehog (SHH) were examined in BCa tissues and adjacent normal tissues. Functional assays, including methylated RNA immunoprecipitation-quantitative PCR (MeRIP-qPCR), RNA immunoprecipitation (RIP), and RNA stability assessments, were performed in J82 BCa cells to explore the underlying mechanisms. Results revealed that KIAA1429 was significantly upregulated in BCa and promoted cell proliferation, migration, and invasion by enhancing m6A modification and stabilizing SHH mRNA, leading to activation of the Hedgehog signaling pathway. In contrast, ALKBH5, which was downregulated in BCa, acted as an m6A demethylase that destabilized SHH mRNA and attenuated Hedgehog pathway activity, thereby counteracting the oncogenic effects of KIAA1429. Moreover, overexpression of SHH reversed the inhibitory effects induced by KIAA1429 knockdown, confirming its role as a downstream effector. In conclusion, ALKBH5 and KIAA1429 exert opposing regulatory effects on BCa progression via m6A-mediated modulation of SHH expression and Hedgehog signaling. These findings highlight SHH mRNA methylation as a central mechanism in BCa malignancy and identify ALKBH5 and KIAA1429 as potential therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信