{"title":"iKcr-DRC:基于新型注意力模块和DenseNet的蛋白质中赖氨酸巴豆酰化位点的预测。","authors":"Xin Wei, Siqin Hu, Jian Tu, Muhammad Akmal Remli","doi":"10.3389/fgene.2025.1574832","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Lysine crotonylation (Kcr) is a recently identified post-translational modification that predominantly occurs on lysine residues and plays a crucial role in regulating gene expression, cellular metabolism, and various biological processes. Increasing evidence has linked Kcr to the pathogenesis of major diseases such as cancer, highlighting the importance of accurately identifying Kcr sites for understanding disease mechanisms and normal cellular function.</p><p><strong>Methods: </strong>In this study, we present a novel deep learning-based computational model, named iKcr-DRC, for the accurate prediction of lysine crotonylation sites. The model leverages a densely connected convolutional network (DenseNet) as its backbone to effectively capture high-level local features from protein sequences. Additionally, we introduce an enhanced channel attention mechanism with a short-circuit connection design, endowing the network with residual properties and improved feature refinement capabilities.</p><p><strong>Results: </strong>The experimental results show that the iKcr-DRC model achieves 90.30%, 78.35%, 84.33% and 69.15% for sensitivity, specificity, accuracy, and Matthew's correlation coefficients, respectively. These results indicate a significant improvement over existing state-of-the-art Kcr prediction tools.</p><p><strong>Discussion: </strong>The proposed iKcr-DRC model provides an effective and innovative approach for predicting lysine crotonylation sites. It holds great potential for advancing applications in bioinformatics and enhancing the understanding of protein post-translational modifications. An online prediction tool based on the iKcr-DRC model is freely accessible at: http://www.lzzzlab.top/ikcr/.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1574832"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187752/pdf/","citationCount":"0","resultStr":"{\"title\":\"iKcr-DRC: prediction of lysine crotonylation sites in proteins based on a novel attention module and DenseNet.\",\"authors\":\"Xin Wei, Siqin Hu, Jian Tu, Muhammad Akmal Remli\",\"doi\":\"10.3389/fgene.2025.1574832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Lysine crotonylation (Kcr) is a recently identified post-translational modification that predominantly occurs on lysine residues and plays a crucial role in regulating gene expression, cellular metabolism, and various biological processes. Increasing evidence has linked Kcr to the pathogenesis of major diseases such as cancer, highlighting the importance of accurately identifying Kcr sites for understanding disease mechanisms and normal cellular function.</p><p><strong>Methods: </strong>In this study, we present a novel deep learning-based computational model, named iKcr-DRC, for the accurate prediction of lysine crotonylation sites. The model leverages a densely connected convolutional network (DenseNet) as its backbone to effectively capture high-level local features from protein sequences. Additionally, we introduce an enhanced channel attention mechanism with a short-circuit connection design, endowing the network with residual properties and improved feature refinement capabilities.</p><p><strong>Results: </strong>The experimental results show that the iKcr-DRC model achieves 90.30%, 78.35%, 84.33% and 69.15% for sensitivity, specificity, accuracy, and Matthew's correlation coefficients, respectively. These results indicate a significant improvement over existing state-of-the-art Kcr prediction tools.</p><p><strong>Discussion: </strong>The proposed iKcr-DRC model provides an effective and innovative approach for predicting lysine crotonylation sites. It holds great potential for advancing applications in bioinformatics and enhancing the understanding of protein post-translational modifications. An online prediction tool based on the iKcr-DRC model is freely accessible at: http://www.lzzzlab.top/ikcr/.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1574832\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187752/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1574832\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1574832","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
iKcr-DRC: prediction of lysine crotonylation sites in proteins based on a novel attention module and DenseNet.
Introduction: Lysine crotonylation (Kcr) is a recently identified post-translational modification that predominantly occurs on lysine residues and plays a crucial role in regulating gene expression, cellular metabolism, and various biological processes. Increasing evidence has linked Kcr to the pathogenesis of major diseases such as cancer, highlighting the importance of accurately identifying Kcr sites for understanding disease mechanisms and normal cellular function.
Methods: In this study, we present a novel deep learning-based computational model, named iKcr-DRC, for the accurate prediction of lysine crotonylation sites. The model leverages a densely connected convolutional network (DenseNet) as its backbone to effectively capture high-level local features from protein sequences. Additionally, we introduce an enhanced channel attention mechanism with a short-circuit connection design, endowing the network with residual properties and improved feature refinement capabilities.
Results: The experimental results show that the iKcr-DRC model achieves 90.30%, 78.35%, 84.33% and 69.15% for sensitivity, specificity, accuracy, and Matthew's correlation coefficients, respectively. These results indicate a significant improvement over existing state-of-the-art Kcr prediction tools.
Discussion: The proposed iKcr-DRC model provides an effective and innovative approach for predicting lysine crotonylation sites. It holds great potential for advancing applications in bioinformatics and enhancing the understanding of protein post-translational modifications. An online prediction tool based on the iKcr-DRC model is freely accessible at: http://www.lzzzlab.top/ikcr/.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.