溶酶体磷脂酶A2降解氧化磷脂调节肺纤维化。

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Doyun Kwak, Song Ling, Natalya Subbotina, James A Shayman, Tomas H Sisson, Kevin K Kim
{"title":"溶酶体磷脂酶A2降解氧化磷脂调节肺纤维化。","authors":"Doyun Kwak, Song Ling, Natalya Subbotina, James A Shayman, Tomas H Sisson, Kevin K Kim","doi":"10.1152/ajplung.00038.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Recent evidence suggests that oxidized phospholipids (oxPLs) play a critical role in the pathogenesis of pulmonary fibrosis. The precise mechanism by which oxPL contributes to fibrosis remains unknown and likely involves complex interactions between epithelial cell injury, phospholipid accumulation, and macrophage activation. We have previously identified lysosomal phospholipase A2 (LPLA2, PLAG15) as a critical enzyme involved in the catabolism of oxPL, especially within alveolar macrophages. We hypothesized that LPLA2 activity would mitigate the accumulation of oxPL within macrophages and thereby influence the development of pulmonary fibrosis. Using wild-type (WT) and LPLA2-null mice, we induced lung injury with bleomycin and assessed lung fibrosis severity, bronchoalveolar lavage (BAL) cell lipid accumulation, and monocyte/macrophage profibrotic activation. Our results show that LPLA2-null mice accumulated significantly more intracellular lipid within their alveolar cells, exhibited higher transforming growth factor-β (TGFβ) levels in their BAL fluid, and developed more severe fibrosis after bleomycin injury compared with WT mice. In vitro studies confirmed that LPLA2 expression in WT bone marrow-derived macrophages limits oxPL accumulation and thereby mitigates their profibrotic activation. Overexpression of LPLA2 in WT mice reduced alveolar cell lipid accumulation, decreased BAL fluid (BALF) TGFβ levels, and attenuated fibrosis. These findings underscore the critical role that LPLA2 plays in regulating lipid accumulation and suggest that enhancing LPLA2 activity within alveolar cells (or the alveolar compartment) could attenuate the fibrotic response following lung injury. By identifying LPLA2 as a key regulator in this pathway, we propose that targeting LPLA2 and related lipid metabolic processes offers a promising therapeutic strategy.<b>NEW & NOTEWORTHY</b> During lung injury and fibrosis, there is accumulation of oxidized phospholipid within macrophages in the alveolar space. This promotes profibrotic macrophage activation, resulting in pulmonary fibrosis. We find that degradation of oxidized phospholipid by lysosomal phospholipase A2 is important in preventing fibrosis. This offers a potential therapeutic target.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L214-L223"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of oxidized phospholipids by lysosomal phospholipase A2 regulates pulmonary fibrosis.\",\"authors\":\"Doyun Kwak, Song Ling, Natalya Subbotina, James A Shayman, Tomas H Sisson, Kevin K Kim\",\"doi\":\"10.1152/ajplung.00038.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent evidence suggests that oxidized phospholipids (oxPLs) play a critical role in the pathogenesis of pulmonary fibrosis. The precise mechanism by which oxPL contributes to fibrosis remains unknown and likely involves complex interactions between epithelial cell injury, phospholipid accumulation, and macrophage activation. We have previously identified lysosomal phospholipase A2 (LPLA2, PLAG15) as a critical enzyme involved in the catabolism of oxPL, especially within alveolar macrophages. We hypothesized that LPLA2 activity would mitigate the accumulation of oxPL within macrophages and thereby influence the development of pulmonary fibrosis. Using wild-type (WT) and LPLA2-null mice, we induced lung injury with bleomycin and assessed lung fibrosis severity, bronchoalveolar lavage (BAL) cell lipid accumulation, and monocyte/macrophage profibrotic activation. Our results show that LPLA2-null mice accumulated significantly more intracellular lipid within their alveolar cells, exhibited higher transforming growth factor-β (TGFβ) levels in their BAL fluid, and developed more severe fibrosis after bleomycin injury compared with WT mice. In vitro studies confirmed that LPLA2 expression in WT bone marrow-derived macrophages limits oxPL accumulation and thereby mitigates their profibrotic activation. Overexpression of LPLA2 in WT mice reduced alveolar cell lipid accumulation, decreased BAL fluid (BALF) TGFβ levels, and attenuated fibrosis. These findings underscore the critical role that LPLA2 plays in regulating lipid accumulation and suggest that enhancing LPLA2 activity within alveolar cells (or the alveolar compartment) could attenuate the fibrotic response following lung injury. By identifying LPLA2 as a key regulator in this pathway, we propose that targeting LPLA2 and related lipid metabolic processes offers a promising therapeutic strategy.<b>NEW & NOTEWORTHY</b> During lung injury and fibrosis, there is accumulation of oxidized phospholipid within macrophages in the alveolar space. This promotes profibrotic macrophage activation, resulting in pulmonary fibrosis. We find that degradation of oxidized phospholipid by lysosomal phospholipase A2 is important in preventing fibrosis. This offers a potential therapeutic target.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L214-L223\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00038.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00038.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近的证据表明氧化磷脂(oxPL)在肺纤维化的发病机制中起关键作用。oxPL促进纤维化的确切机制尚不清楚,可能涉及上皮细胞损伤、磷脂积累和巨噬细胞活化之间的复杂相互作用。我们之前已经确定溶酶体磷脂酶A2 (LPLA2, PLAG15)是参与oxPL分解代谢的关键酶,特别是在肺泡巨噬细胞内。我们假设LPLA2活性会减轻巨噬细胞内oxPL的积累,从而影响肺纤维化的发展。使用野生型(WT)和lpla2缺失小鼠,我们用博来霉素诱导肺损伤,并评估肺纤维化严重程度、支气管肺泡灌洗(BAL)细胞脂质积累和单核细胞/巨噬细胞纤维化活化。我们的研究结果表明,与WT小鼠相比,lpla2缺失小鼠肺泡细胞内积累了更多的细胞内脂质,BAL液中tgf - β水平更高,并且在博来霉素损伤后发生了更严重的纤维化。体外研究证实,LPLA2在WT骨髓源性巨噬细胞中的表达限制了oxPL的积累,从而减轻了它们的纤维化活化。在WT小鼠中过表达LPLA2可减少肺泡细胞脂质积累,降低BALF - tgf - β水平,并减轻纤维化。这些发现强调了LPLA2在调节脂质积累中的关键作用,并表明增强肺泡细胞(或肺泡室)内LPLA2的活性可以减轻肺损伤后的纤维化反应。通过确定LPLA2是该途径的关键调节因子,我们提出靶向LPLA2和相关的脂质代谢过程提供了一种有希望的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degradation of oxidized phospholipids by lysosomal phospholipase A2 regulates pulmonary fibrosis.

Recent evidence suggests that oxidized phospholipids (oxPLs) play a critical role in the pathogenesis of pulmonary fibrosis. The precise mechanism by which oxPL contributes to fibrosis remains unknown and likely involves complex interactions between epithelial cell injury, phospholipid accumulation, and macrophage activation. We have previously identified lysosomal phospholipase A2 (LPLA2, PLAG15) as a critical enzyme involved in the catabolism of oxPL, especially within alveolar macrophages. We hypothesized that LPLA2 activity would mitigate the accumulation of oxPL within macrophages and thereby influence the development of pulmonary fibrosis. Using wild-type (WT) and LPLA2-null mice, we induced lung injury with bleomycin and assessed lung fibrosis severity, bronchoalveolar lavage (BAL) cell lipid accumulation, and monocyte/macrophage profibrotic activation. Our results show that LPLA2-null mice accumulated significantly more intracellular lipid within their alveolar cells, exhibited higher transforming growth factor-β (TGFβ) levels in their BAL fluid, and developed more severe fibrosis after bleomycin injury compared with WT mice. In vitro studies confirmed that LPLA2 expression in WT bone marrow-derived macrophages limits oxPL accumulation and thereby mitigates their profibrotic activation. Overexpression of LPLA2 in WT mice reduced alveolar cell lipid accumulation, decreased BAL fluid (BALF) TGFβ levels, and attenuated fibrosis. These findings underscore the critical role that LPLA2 plays in regulating lipid accumulation and suggest that enhancing LPLA2 activity within alveolar cells (or the alveolar compartment) could attenuate the fibrotic response following lung injury. By identifying LPLA2 as a key regulator in this pathway, we propose that targeting LPLA2 and related lipid metabolic processes offers a promising therapeutic strategy.NEW & NOTEWORTHY During lung injury and fibrosis, there is accumulation of oxidized phospholipid within macrophages in the alveolar space. This promotes profibrotic macrophage activation, resulting in pulmonary fibrosis. We find that degradation of oxidized phospholipid by lysosomal phospholipase A2 is important in preventing fibrosis. This offers a potential therapeutic target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信