高空和远距离的全身探测、识别和识别

IF 5
Siyuan Huang;Ram Prabhakar Kathirvel;Yuxiang Guo;Chun Pong Lau;Rama Chellappa
{"title":"高空和远距离的全身探测、识别和识别","authors":"Siyuan Huang;Ram Prabhakar Kathirvel;Yuxiang Guo;Chun Pong Lau;Rama Chellappa","doi":"10.1109/TBIOM.2024.3487545","DOIUrl":null,"url":null,"abstract":"In this paper, we address the challenging task of whole-body biometric detection, recognition, and identification at distances of up to 500m and large pitch angles of up to 50°. We present an end-to-end system evaluated on the challenging Biometric Recognition and Identification at Altitude and Range (BRIAR) dataset. Our approach involves pre-training the detector on common image datasets and fine-tuning it on BRIAR’s complex videos and images. After detection, we extract body images and employ a feature extractor for recognition. We conduct thorough evaluations under various conditions, such as different ranges and angles in indoor, outdoor, and aerial scenarios. Our method achieves an average F1 score of 98.29% at IoU <inline-formula> <tex-math>${=}0.7$ </tex-math></inline-formula> and demonstrates strong performance in recognition accuracy and true acceptance rate at low false acceptance rates compared to existing models. On a test set of 100 subjects with 444 distractors, our model achieves a rank-20 recognition accuracy of 75.13% and a TAR@1%FAR of 54.09%.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"7 3","pages":"331-343"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-Body Detection, Identification and Recognition at Altitude and Range\",\"authors\":\"Siyuan Huang;Ram Prabhakar Kathirvel;Yuxiang Guo;Chun Pong Lau;Rama Chellappa\",\"doi\":\"10.1109/TBIOM.2024.3487545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the challenging task of whole-body biometric detection, recognition, and identification at distances of up to 500m and large pitch angles of up to 50°. We present an end-to-end system evaluated on the challenging Biometric Recognition and Identification at Altitude and Range (BRIAR) dataset. Our approach involves pre-training the detector on common image datasets and fine-tuning it on BRIAR’s complex videos and images. After detection, we extract body images and employ a feature extractor for recognition. We conduct thorough evaluations under various conditions, such as different ranges and angles in indoor, outdoor, and aerial scenarios. Our method achieves an average F1 score of 98.29% at IoU <inline-formula> <tex-math>${=}0.7$ </tex-math></inline-formula> and demonstrates strong performance in recognition accuracy and true acceptance rate at low false acceptance rates compared to existing models. On a test set of 100 subjects with 444 distractors, our model achieves a rank-20 recognition accuracy of 75.13% and a TAR@1%FAR of 54.09%.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"7 3\",\"pages\":\"331-343\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737205/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737205/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们解决了在长达500米的距离和长达50°的大俯仰角下的全身生物特征检测、识别和识别的挑战性任务。我们提出了一个端到端系统评估具有挑战性的生物识别和识别在高度和范围(BRIAR)数据集。我们的方法包括在常见图像数据集上对检测器进行预训练,并在BRIAR的复杂视频和图像上对其进行微调。检测后,我们提取人体图像,并使用特征提取器进行识别。我们在各种条件下进行全面的评估,例如室内,室外和空中场景的不同范围和角度。我们的方法在IoU ${=}0.7$时平均F1得分为98.29%,与现有模型相比,在低误接受率的情况下,在识别精度和真实接受率方面表现出较强的性能。在100个受试者444个干扰物的测试集上,我们的模型达到了75.13%的rank-20识别准确率和54.09%的TAR@1%FAR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole-Body Detection, Identification and Recognition at Altitude and Range
In this paper, we address the challenging task of whole-body biometric detection, recognition, and identification at distances of up to 500m and large pitch angles of up to 50°. We present an end-to-end system evaluated on the challenging Biometric Recognition and Identification at Altitude and Range (BRIAR) dataset. Our approach involves pre-training the detector on common image datasets and fine-tuning it on BRIAR’s complex videos and images. After detection, we extract body images and employ a feature extractor for recognition. We conduct thorough evaluations under various conditions, such as different ranges and angles in indoor, outdoor, and aerial scenarios. Our method achieves an average F1 score of 98.29% at IoU ${=}0.7$ and demonstrates strong performance in recognition accuracy and true acceptance rate at low false acceptance rates compared to existing models. On a test set of 100 subjects with 444 distractors, our model achieves a rank-20 recognition accuracy of 75.13% and a TAR@1%FAR of 54.09%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信