无穷退化非齐次椭圆方程的正则性,第1部分:Moser方法

IF 1.3 2区 数学 Q1 MATHEMATICS
Lyudmila Korobenko , Cristian Rios , Eric Sawyer , Ruipeng Shen
{"title":"无穷退化非齐次椭圆方程的正则性,第1部分:Moser方法","authors":"Lyudmila Korobenko ,&nbsp;Cristian Rios ,&nbsp;Eric Sawyer ,&nbsp;Ruipeng Shen","doi":"10.1016/j.na.2025.113888","DOIUrl":null,"url":null,"abstract":"<div><div>We show that if <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is equipped with a certain non-doubling metric and an Orlicz-Sobolev inequality holds for a special family of Young functions <span><math><mi>Φ</mi></math></span>, then weak solutions to quasilinear infinitely degenerate elliptic equations of the form <span><math><mrow><mo>−</mo><mi>div</mi><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>u</mi></mrow></mfenced><mo>∇</mo><mi>u</mi><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>div</mi></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> are locally bounded. This is obtained by the implementation of a Moser iteration method, what constitutes the first instance of such technique applied to infinite degenerate equations. The results presented here partially extend previously known estimates for solutions of similar equations in which the right hand side does not have a drift term. We also obtain bounds for small negative powers of nonnegative solutions, which will be applied in a subsequent paper to prove continuity of solutions. We also provide examples of geometries in which our abstract theorem is applicable. We consider the family of functions <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>σ</mi></mrow></msub><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><msup><mrow><mfenced><mrow><msup><mrow><mo>ln</mo></mrow><mrow><mfenced><mrow><mi>k</mi></mrow></mfenced></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>σ</mi></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>k</mi><mo>∈</mo><mi>N</mi><mo>,</mo><mspace></mspace><mi>σ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mo>−</mo><mi>∞</mi><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mi>∞</mi><mo>,</mo></mrow></math></span> infinitely degenerate at the origin, and show that all weak solutions to <span><math><mrow><mo>−</mo><mi>div</mi><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>u</mi></mrow></mfenced><mi>∇</mi><mi>u</mi><mo>=</mo><mi>ϕ</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>div</mi></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></mrow></mfenced><mo>∼</mo><mfenced><mrow><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>σ</mi></mrow></msub><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mtd></mtr></mtable></mrow></mfenced><mo>,</mo></mrow></math></span> with rough data <span><math><mrow><mi>A</mi><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, are locally bounded when <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>σ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113888"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity for infinitely degenerate inhomogenous elliptic equations, Part I: The Moser Method\",\"authors\":\"Lyudmila Korobenko ,&nbsp;Cristian Rios ,&nbsp;Eric Sawyer ,&nbsp;Ruipeng Shen\",\"doi\":\"10.1016/j.na.2025.113888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that if <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is equipped with a certain non-doubling metric and an Orlicz-Sobolev inequality holds for a special family of Young functions <span><math><mi>Φ</mi></math></span>, then weak solutions to quasilinear infinitely degenerate elliptic equations of the form <span><math><mrow><mo>−</mo><mi>div</mi><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>u</mi></mrow></mfenced><mo>∇</mo><mi>u</mi><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>div</mi></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> are locally bounded. This is obtained by the implementation of a Moser iteration method, what constitutes the first instance of such technique applied to infinite degenerate equations. The results presented here partially extend previously known estimates for solutions of similar equations in which the right hand side does not have a drift term. We also obtain bounds for small negative powers of nonnegative solutions, which will be applied in a subsequent paper to prove continuity of solutions. We also provide examples of geometries in which our abstract theorem is applicable. We consider the family of functions <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>σ</mi></mrow></msub><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><msup><mrow><mfenced><mrow><msup><mrow><mo>ln</mo></mrow><mrow><mfenced><mrow><mi>k</mi></mrow></mfenced></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>σ</mi></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>k</mi><mo>∈</mo><mi>N</mi><mo>,</mo><mspace></mspace><mi>σ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mo>−</mo><mi>∞</mi><mo>&lt;</mo><mi>x</mi><mo>&lt;</mo><mi>∞</mi><mo>,</mo></mrow></math></span> infinitely degenerate at the origin, and show that all weak solutions to <span><math><mrow><mo>−</mo><mi>div</mi><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>u</mi></mrow></mfenced><mi>∇</mi><mi>u</mi><mo>=</mo><mi>ϕ</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>div</mi></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></mrow></mfenced><mo>∼</mo><mfenced><mrow><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>σ</mi></mrow></msub><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mtd></mtr></mtable></mrow></mfenced><mo>,</mo></mrow></math></span> with rough data <span><math><mrow><mi>A</mi><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, are locally bounded when <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>σ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113888\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001427\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001427","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果Rn具有一定的非加倍度规,并且对于一类特殊的Young函数Φ, Orlicz-Sobolev不等式成立,则形式为- divAx,u∇u=ϕ0 - divAϕ→1的拟线性无限退化椭圆方程的弱解是局部有界的。这是通过实现莫泽迭代法得到的,它构成了这种技术应用于无限退化方程的第一个实例。本文给出的结果部分地扩展了以前已知的类似方程解的估计,其中右手边没有漂移项。我们还得到了非负解的小负幂的界,将在后续的文章中用于证明解的连续性。我们还提供了可以应用抽象定理的几何例子。我们考虑函数族fk,σx=xlnk1xσ,k∈N,σ>0,−∞<x<∞,在原点处无限简并,并证明了所有的弱解- divAx,y,u∇u= x,y - divAϕ→1x,y,Ax,y,z ~ 100fk,σx2,粗糙数据A, 0, φ→1,在k=1和0<;σ<;1时是局部有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity for infinitely degenerate inhomogenous elliptic equations, Part I: The Moser Method
We show that if Rn is equipped with a certain non-doubling metric and an Orlicz-Sobolev inequality holds for a special family of Young functions Φ, then weak solutions to quasilinear infinitely degenerate elliptic equations of the form divAx,uu=ϕ0divAϕ1 are locally bounded. This is obtained by the implementation of a Moser iteration method, what constitutes the first instance of such technique applied to infinite degenerate equations. The results presented here partially extend previously known estimates for solutions of similar equations in which the right hand side does not have a drift term. We also obtain bounds for small negative powers of nonnegative solutions, which will be applied in a subsequent paper to prove continuity of solutions. We also provide examples of geometries in which our abstract theorem is applicable. We consider the family of functions fk,σx=xlnk1xσ,kN,σ>0,<x<, infinitely degenerate at the origin, and show that all weak solutions to divAx,y,uu=ϕx,ydivAϕ1x,y,Ax,y,z100fk,σx2, with rough data A,ϕ0,ϕ1, are locally bounded when k=1 and 0<σ<1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信