移动网络中多智能体博弈的随机学习算法:跨筒仓联合学习视角

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hongze Liu , Junzhe Liu , Zhaojiacheng Zhou , Shijing Yuan , Jiong Lou , Chentao Wu , Jie Li
{"title":"移动网络中多智能体博弈的随机学习算法:跨筒仓联合学习视角","authors":"Hongze Liu ,&nbsp;Junzhe Liu ,&nbsp;Zhaojiacheng Zhou ,&nbsp;Shijing Yuan ,&nbsp;Jiong Lou ,&nbsp;Chentao Wu ,&nbsp;Jie Li","doi":"10.1016/j.comnet.2025.111458","DOIUrl":null,"url":null,"abstract":"<div><div>Collaboration in mobile network involves multiple servers and smart devices, introducing the challenging of coordination. The inherent challenges arise from incomplete environmental information due to dynamic networks and privacy concerns, making collaboration for all participants a complex task. In this work, we introduce a Multi-agent step Refinement Stochastic Learning Algorithm (MARSL) empowered by neighbor search, achieving superior outcomes with low complexity compared to baseline algorithms. To demonstrate the performance of the proposed algorithm, we provide comprehensive theoretical analysis on the superior properties. We then formulate two Non-IID cross-silo Federated Learning scenarios as typical non-convex cases in mobile network collaboration. By conducting multiple experiments, we illustrate the algorithm’s superior performance in both final utility and computation complexity. This contribution addresses the cooperation challenge in Cross-silo FL, providing an effective solution for scenarios with incomplete environmental information.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"269 ","pages":"Article 111458"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic learning algorithm for multi-agent game in mobile network: A Cross-Silo federated learning perspective\",\"authors\":\"Hongze Liu ,&nbsp;Junzhe Liu ,&nbsp;Zhaojiacheng Zhou ,&nbsp;Shijing Yuan ,&nbsp;Jiong Lou ,&nbsp;Chentao Wu ,&nbsp;Jie Li\",\"doi\":\"10.1016/j.comnet.2025.111458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Collaboration in mobile network involves multiple servers and smart devices, introducing the challenging of coordination. The inherent challenges arise from incomplete environmental information due to dynamic networks and privacy concerns, making collaboration for all participants a complex task. In this work, we introduce a Multi-agent step Refinement Stochastic Learning Algorithm (MARSL) empowered by neighbor search, achieving superior outcomes with low complexity compared to baseline algorithms. To demonstrate the performance of the proposed algorithm, we provide comprehensive theoretical analysis on the superior properties. We then formulate two Non-IID cross-silo Federated Learning scenarios as typical non-convex cases in mobile network collaboration. By conducting multiple experiments, we illustrate the algorithm’s superior performance in both final utility and computation complexity. This contribution addresses the cooperation challenge in Cross-silo FL, providing an effective solution for scenarios with incomplete environmental information.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"269 \",\"pages\":\"Article 111458\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625004256\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625004256","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

移动网络中的协作涉及多个服务器和智能设备,带来了协调的挑战。由于动态网络和隐私问题导致的环境信息不完整,使得所有参与者的协作成为一项复杂的任务,这是固有的挑战。在这项工作中,我们引入了一种基于邻居搜索的多智能体步进优化随机学习算法(MARSL),与基线算法相比,该算法以较低的复杂度获得了更好的结果。为了证明所提出算法的性能,我们对其优越的性能进行了全面的理论分析。然后,我们制定了两个非iid跨筒仓联邦学习场景,作为移动网络协作中的典型非凸案例。通过多次实验,我们证明了该算法在最终效用和计算复杂度方面的优越性能。这一贡献解决了跨筒仓FL中的合作挑战,为环境信息不完整的场景提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic learning algorithm for multi-agent game in mobile network: A Cross-Silo federated learning perspective
Collaboration in mobile network involves multiple servers and smart devices, introducing the challenging of coordination. The inherent challenges arise from incomplete environmental information due to dynamic networks and privacy concerns, making collaboration for all participants a complex task. In this work, we introduce a Multi-agent step Refinement Stochastic Learning Algorithm (MARSL) empowered by neighbor search, achieving superior outcomes with low complexity compared to baseline algorithms. To demonstrate the performance of the proposed algorithm, we provide comprehensive theoretical analysis on the superior properties. We then formulate two Non-IID cross-silo Federated Learning scenarios as typical non-convex cases in mobile network collaboration. By conducting multiple experiments, we illustrate the algorithm’s superior performance in both final utility and computation complexity. This contribution addresses the cooperation challenge in Cross-silo FL, providing an effective solution for scenarios with incomplete environmental information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信