背包约束下的聚类:背包中值问题的参数化逼近

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Zhen Zhang , Zhuohang Gao , Limei Liu , Yao Liu , Jie Chen , Qilong Feng
{"title":"背包约束下的聚类:背包中值问题的参数化逼近","authors":"Zhen Zhang ,&nbsp;Zhuohang Gao ,&nbsp;Limei Liu ,&nbsp;Yao Liu ,&nbsp;Jie Chen ,&nbsp;Qilong Feng","doi":"10.1016/j.tcs.2025.115426","DOIUrl":null,"url":null,"abstract":"<div><div>The <span>Knapsack Median</span> problem, defined over a set of clients and facilities in a metric space, seeks to open a subset of facilities and connect each client to an opened facility, with the goal of minimizing the sum of client-connection costs while keeping the sum of facility-opening costs within a specified budget. Solving this problem exactly in FPT time, parameterized by the maximum number of opened facilities (denoted by <em>k</em>), is unlikely due to its W[2]-hardness. Thus, we focus on parameterized approximation algorithms for the problem. We give a sampling-based method that reduces the solution search space, which yields a <span><math><mo>(</mo><mn>3</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm running in <span><math><msup><mrow><mo>(</mo><mi>k</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> time in general metric spaces and a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm with similar running time in <em>d</em>-dimensional Euclidean space.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1052 ","pages":"Article 115426"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering under a knapsack constraint: Parameterized approximation for the knapsack median problem\",\"authors\":\"Zhen Zhang ,&nbsp;Zhuohang Gao ,&nbsp;Limei Liu ,&nbsp;Yao Liu ,&nbsp;Jie Chen ,&nbsp;Qilong Feng\",\"doi\":\"10.1016/j.tcs.2025.115426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span>Knapsack Median</span> problem, defined over a set of clients and facilities in a metric space, seeks to open a subset of facilities and connect each client to an opened facility, with the goal of minimizing the sum of client-connection costs while keeping the sum of facility-opening costs within a specified budget. Solving this problem exactly in FPT time, parameterized by the maximum number of opened facilities (denoted by <em>k</em>), is unlikely due to its W[2]-hardness. Thus, we focus on parameterized approximation algorithms for the problem. We give a sampling-based method that reduces the solution search space, which yields a <span><math><mo>(</mo><mn>3</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm running in <span><math><msup><mrow><mo>(</mo><mi>k</mi><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> time in general metric spaces and a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation algorithm with similar running time in <em>d</em>-dimensional Euclidean space.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1052 \",\"pages\":\"Article 115426\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525003640\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003640","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背包中位数问题,定义在公制空间中的一组客户和设施上,寻求开放设施的子集,并将每个客户连接到开放的设施,目标是最小化客户连接成本的总和,同时将设施开放成本的总和保持在指定的预算范围内。由于FPT的w[2]-硬度,在FPT时间内精确地解决这个问题是不可能的,FPT时间是由打开设施的最大数量(用k表示)参数化的。因此,我们关注于该问题的参数化逼近算法。我们给出了一种基于采样的方法,该方法减小了解的搜索空间,得到了在一般度量空间中运行时间为(kε−1)O(k)nO(1)的(3+ε)-近似算法和在d维欧几里德空间中运行时间相似的(1+ε)-近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering under a knapsack constraint: Parameterized approximation for the knapsack median problem
The Knapsack Median problem, defined over a set of clients and facilities in a metric space, seeks to open a subset of facilities and connect each client to an opened facility, with the goal of minimizing the sum of client-connection costs while keeping the sum of facility-opening costs within a specified budget. Solving this problem exactly in FPT time, parameterized by the maximum number of opened facilities (denoted by k), is unlikely due to its W[2]-hardness. Thus, we focus on parameterized approximation algorithms for the problem. We give a sampling-based method that reduces the solution search space, which yields a (3+ε)-approximation algorithm running in (kε1)O(k)nO(1) time in general metric spaces and a (1+ε)-approximation algorithm with similar running time in d-dimensional Euclidean space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信