Qi He , Zhiguo Feng , Zhibao Li , Ka Fai Cedric Yiu
{"title":"近场宽带IIR波束形成器的设计与性能限制","authors":"Qi He , Zhiguo Feng , Zhibao Li , Ka Fai Cedric Yiu","doi":"10.1016/j.dsp.2025.105409","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the design of near-field broadband beamformer based on IIR filters, performing both spatial and frequency filtering. The design problem is formulated as an optimal minimax problem to minimize the error between the desired response and the actual response. To demonstrate the theoretical advantage of the proposed IIR-based beamformer over conventional FIR designs, we introduce a novel performance limit analysis framework in which the filter length is treated as an arbitrary design parameter. This performance limit can be efficiently computed by solving a sequence of functional optimization subproblems. A key theoretical contribution of this work is the proof that both FIR and IIR beamformers converge to the same performance bound. However, the proposed IIR structure achieves this bound with significantly fewer filter coefficients. This finding provides valuable guidance for selecting appropriate filter lengths in practical applications. Furthermore, we propose a novel reduced structure in which all array elements share a common feedback section, offering additional simplification without sacrificing performance. The proposed method is evaluated by means of a room simulation model for various reverberation times. Numerical experiments have shown that the optimal value of the IIR design method can approach the limit faster than FIR-based beamformers, and all reduced structures achieved significant reduction in terms of filter lengths comparing with FIR beamformers in the performance limit.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"167 ","pages":"Article 105409"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and performance limit of near-field broadband IIR beamformers\",\"authors\":\"Qi He , Zhiguo Feng , Zhibao Li , Ka Fai Cedric Yiu\",\"doi\":\"10.1016/j.dsp.2025.105409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers the design of near-field broadband beamformer based on IIR filters, performing both spatial and frequency filtering. The design problem is formulated as an optimal minimax problem to minimize the error between the desired response and the actual response. To demonstrate the theoretical advantage of the proposed IIR-based beamformer over conventional FIR designs, we introduce a novel performance limit analysis framework in which the filter length is treated as an arbitrary design parameter. This performance limit can be efficiently computed by solving a sequence of functional optimization subproblems. A key theoretical contribution of this work is the proof that both FIR and IIR beamformers converge to the same performance bound. However, the proposed IIR structure achieves this bound with significantly fewer filter coefficients. This finding provides valuable guidance for selecting appropriate filter lengths in practical applications. Furthermore, we propose a novel reduced structure in which all array elements share a common feedback section, offering additional simplification without sacrificing performance. The proposed method is evaluated by means of a room simulation model for various reverberation times. Numerical experiments have shown that the optimal value of the IIR design method can approach the limit faster than FIR-based beamformers, and all reduced structures achieved significant reduction in terms of filter lengths comparing with FIR beamformers in the performance limit.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"167 \",\"pages\":\"Article 105409\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200425004312\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425004312","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and performance limit of near-field broadband IIR beamformers
This paper considers the design of near-field broadband beamformer based on IIR filters, performing both spatial and frequency filtering. The design problem is formulated as an optimal minimax problem to minimize the error between the desired response and the actual response. To demonstrate the theoretical advantage of the proposed IIR-based beamformer over conventional FIR designs, we introduce a novel performance limit analysis framework in which the filter length is treated as an arbitrary design parameter. This performance limit can be efficiently computed by solving a sequence of functional optimization subproblems. A key theoretical contribution of this work is the proof that both FIR and IIR beamformers converge to the same performance bound. However, the proposed IIR structure achieves this bound with significantly fewer filter coefficients. This finding provides valuable guidance for selecting appropriate filter lengths in practical applications. Furthermore, we propose a novel reduced structure in which all array elements share a common feedback section, offering additional simplification without sacrificing performance. The proposed method is evaluated by means of a room simulation model for various reverberation times. Numerical experiments have shown that the optimal value of the IIR design method can approach the limit faster than FIR-based beamformers, and all reduced structures achieved significant reduction in terms of filter lengths comparing with FIR beamformers in the performance limit.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,