富镁填充金属对脉冲激光焊接超细晶粒AA6061焊缝区性能影响的田口优化研究

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Karami , M.H. Siadati , M. Yousefieh
{"title":"富镁填充金属对脉冲激光焊接超细晶粒AA6061焊缝区性能影响的田口优化研究","authors":"S. Karami ,&nbsp;M.H. Siadati ,&nbsp;M. Yousefieh","doi":"10.1016/j.jajp.2025.100323","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of filler metal with high magnesium (Mg) content at different heat inputs on microstructural evolution, strengthening mechanisms, and reduction of welding defects in pulsed laser welding (PLW) of ultra-fine-grained (UFG) AA6061 sheets. The dominant mechanism in UFG-welded AA6061 specimens, produced by accumulative roll bonding (ARB), was attributed to the grain boundary strengthening (GBS) effect due to grain size reduction and an increase in dislocation density. High heat input and remelting during PLW with AA5356 filler destroy the UFG structure, causing grain growth in the heat-affected zone (HAZ) and weld zone (WZ). It is shown that weld No. 7, with a heat input of 112 J/mm, and the use of high Mg filler metal contributed to the improvement of WZ strength due to increased fluidity, uniform distribution of this alloying element, and precipitation of Mg<sub>2</sub>Si strengthening phase in the WZ. After welding under optimal conditions using a filler metal along with high Mg content, the strengthening mechanisms changed from the GBS effect and increased dislocation density to solid solution strengthening and precipitation of Mg<sub>2</sub>Si as the strengthening phase. Scanning electron microscopy images show that laser welding using AA5356 filler metal eliminates the delamination effect and local necking, which are the leading causes of AA6061-UFGed failure. The failure in weld No. 7 indicates ductile fracture due to the heterogeneous distribution of dimples.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100323"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Mg-rich filler metal on weld zone properties in pulsed laser-welded ultra-fine grain AA6061: A Taguchi optimization study\",\"authors\":\"S. Karami ,&nbsp;M.H. Siadati ,&nbsp;M. Yousefieh\",\"doi\":\"10.1016/j.jajp.2025.100323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effects of filler metal with high magnesium (Mg) content at different heat inputs on microstructural evolution, strengthening mechanisms, and reduction of welding defects in pulsed laser welding (PLW) of ultra-fine-grained (UFG) AA6061 sheets. The dominant mechanism in UFG-welded AA6061 specimens, produced by accumulative roll bonding (ARB), was attributed to the grain boundary strengthening (GBS) effect due to grain size reduction and an increase in dislocation density. High heat input and remelting during PLW with AA5356 filler destroy the UFG structure, causing grain growth in the heat-affected zone (HAZ) and weld zone (WZ). It is shown that weld No. 7, with a heat input of 112 J/mm, and the use of high Mg filler metal contributed to the improvement of WZ strength due to increased fluidity, uniform distribution of this alloying element, and precipitation of Mg<sub>2</sub>Si strengthening phase in the WZ. After welding under optimal conditions using a filler metal along with high Mg content, the strengthening mechanisms changed from the GBS effect and increased dislocation density to solid solution strengthening and precipitation of Mg<sub>2</sub>Si as the strengthening phase. Scanning electron microscopy images show that laser welding using AA5356 filler metal eliminates the delamination effect and local necking, which are the leading causes of AA6061-UFGed failure. The failure in weld No. 7 indicates ductile fracture due to the heterogeneous distribution of dimples.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"12 \",\"pages\":\"Article 100323\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了高镁填充金属在不同热输入下对超细晶AA6061薄板脉冲激光焊接(PLW)过程中组织演变、强化机制和减少焊接缺陷的影响。累积轧制结合(ARB)产生的AA6061 ufg焊接试样的主要机制是晶粒尺寸减小和位错密度增加所导致的晶界强化(GBS)效应。在填充AA5356的PLW过程中,高热量输入和重熔破坏了UFG组织,导致热影响区(HAZ)和焊缝区(WZ)晶粒长大。结果表明:热输入为112 J/mm的7号焊缝和高Mg钎料金属的加入,提高了焊缝的流动性,使合金元素分布均匀,并在焊缝中析出Mg2Si强化相,从而提高了焊缝的强度。在最佳焊接条件下使用高Mg含量的钎料焊接后,强化机制由GBS效应和位错密度增加转变为以Mg2Si为强化相的固溶强化和析出强化。扫描电镜图像显示,采用AA5356填充金属的激光焊接消除了导致AA6061-UFGed失效的主要原因分层效应和局部缩颈。由于韧窝分布不均,7号焊缝为韧性断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Mg-rich filler metal on weld zone properties in pulsed laser-welded ultra-fine grain AA6061: A Taguchi optimization study
This study investigates the effects of filler metal with high magnesium (Mg) content at different heat inputs on microstructural evolution, strengthening mechanisms, and reduction of welding defects in pulsed laser welding (PLW) of ultra-fine-grained (UFG) AA6061 sheets. The dominant mechanism in UFG-welded AA6061 specimens, produced by accumulative roll bonding (ARB), was attributed to the grain boundary strengthening (GBS) effect due to grain size reduction and an increase in dislocation density. High heat input and remelting during PLW with AA5356 filler destroy the UFG structure, causing grain growth in the heat-affected zone (HAZ) and weld zone (WZ). It is shown that weld No. 7, with a heat input of 112 J/mm, and the use of high Mg filler metal contributed to the improvement of WZ strength due to increased fluidity, uniform distribution of this alloying element, and precipitation of Mg2Si strengthening phase in the WZ. After welding under optimal conditions using a filler metal along with high Mg content, the strengthening mechanisms changed from the GBS effect and increased dislocation density to solid solution strengthening and precipitation of Mg2Si as the strengthening phase. Scanning electron microscopy images show that laser welding using AA5356 filler metal eliminates the delamination effect and local necking, which are the leading causes of AA6061-UFGed failure. The failure in weld No. 7 indicates ductile fracture due to the heterogeneous distribution of dimples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信