Cayley树上的q态修正Potts模型及其在反铁磁区的相变

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Hasan Akın
{"title":"Cayley树上的q态修正Potts模型及其在反铁磁区的相变","authors":"Hasan Akın","doi":"10.1016/j.chaos.2025.116746","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a modified version of the Potts model, characterized by a new Hamiltonian that assigns energy <span><math><mrow><mo>+</mo><mi>J</mi></mrow></math></span> when two nearest neighboring spins are identical, and <span><math><mrow><mo>−</mo><mi>J</mi></mrow></math></span> when interacting spins differ. This research initializes the <span><math><mi>q</mi></math></span>-state modified Potts model on a semi-infinite Cayley tree of order <span><math><mi>k</mi></math></span>, utilizing a newly proposed Hamiltonian that promotes dissimilar neighboring spins. This modification, which diverges from the traditional Potts model, addresses the influence of competing interactions pertinent to the antiferromagnetic phase transition regime. Using the cavity method, we construct limiting Gibbs measures by analyzing the associated recurrence equations. The existence of translation-invariant solutions to these relations are further explored using Preston’s approach. Our results demonstrate the existence of phase transitions exclusively in the antiferromagnetic region. Furthermore, through a stability analysis of the dynamical system, we uncover both chaotic and periodic behaviors, highlighting the rich complexity induced by the interplay of non-trivial interactions and the non-amenable geometry of the Cayley tree.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116746"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"q-state modified Potts model on a Cayley tree and its phase transition in antiferromagnetic region\",\"authors\":\"Hasan Akın\",\"doi\":\"10.1016/j.chaos.2025.116746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a modified version of the Potts model, characterized by a new Hamiltonian that assigns energy <span><math><mrow><mo>+</mo><mi>J</mi></mrow></math></span> when two nearest neighboring spins are identical, and <span><math><mrow><mo>−</mo><mi>J</mi></mrow></math></span> when interacting spins differ. This research initializes the <span><math><mi>q</mi></math></span>-state modified Potts model on a semi-infinite Cayley tree of order <span><math><mi>k</mi></math></span>, utilizing a newly proposed Hamiltonian that promotes dissimilar neighboring spins. This modification, which diverges from the traditional Potts model, addresses the influence of competing interactions pertinent to the antiferromagnetic phase transition regime. Using the cavity method, we construct limiting Gibbs measures by analyzing the associated recurrence equations. The existence of translation-invariant solutions to these relations are further explored using Preston’s approach. Our results demonstrate the existence of phase transitions exclusively in the antiferromagnetic region. Furthermore, through a stability analysis of the dynamical system, we uncover both chaotic and periodic behaviors, highlighting the rich complexity induced by the interplay of non-trivial interactions and the non-amenable geometry of the Cayley tree.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116746\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007593\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007593","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了波茨模型的一个改进版本,其特征是一个新的哈密顿量,当两个最近的相邻自旋相同时,它分配能量为+J,当相互作用的自旋不同时,它分配能量为- J。本文利用新提出的促进不同相邻自旋的哈密顿算子,在k阶半无限Cayley树上初始化了q态修正Potts模型。这种与传统波茨模型不同的修正,解决了与反铁磁相变有关的竞争相互作用的影响。通过对相关递推方程的分析,利用空腔法构造了极限吉布斯测度。利用Preston的方法进一步探讨了这些关系的平移不变解的存在性。我们的结果证明了相变只在反铁磁区存在。此外,通过对动力系统的稳定性分析,我们揭示了混沌和周期行为,突出了由非平凡相互作用和Cayley树的非服从几何结构相互作用引起的丰富复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-state modified Potts model on a Cayley tree and its phase transition in antiferromagnetic region
We introduce a modified version of the Potts model, characterized by a new Hamiltonian that assigns energy +J when two nearest neighboring spins are identical, and J when interacting spins differ. This research initializes the q-state modified Potts model on a semi-infinite Cayley tree of order k, utilizing a newly proposed Hamiltonian that promotes dissimilar neighboring spins. This modification, which diverges from the traditional Potts model, addresses the influence of competing interactions pertinent to the antiferromagnetic phase transition regime. Using the cavity method, we construct limiting Gibbs measures by analyzing the associated recurrence equations. The existence of translation-invariant solutions to these relations are further explored using Preston’s approach. Our results demonstrate the existence of phase transitions exclusively in the antiferromagnetic region. Furthermore, through a stability analysis of the dynamical system, we uncover both chaotic and periodic behaviors, highlighting the rich complexity induced by the interplay of non-trivial interactions and the non-amenable geometry of the Cayley tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信