{"title":"利用统计设计方法优化新型Pantoea sp. (PQ584882)固态发酵协同生产木聚糖纤维素水解酶的理化参数","authors":"Neha Maurya , Harsh Sable , Jyoti Chauhan , Amit Kumar , Sharad Agrawal","doi":"10.1016/j.enzmictec.2025.110697","DOIUrl":null,"url":null,"abstract":"<div><div>Xylanase and cellulase have become increasingly significant due to their versatile applications in the food, paper, biofuel, and pharmaceutical industries. Nevertheless, the current production of these enzymes relies on costly substrates, with estimates indicating that over 30 % of the production expenses are attributed to these substrates. The objective of this study is to optimize the physicochemical parameters for obtaining the maximum production of xylanase & cellulase enzyme from <em>Pantoea sp.</em> (PQ584882). The production conditions were statistically optimized using Plackett-Burman design (PBD) and Central Composite design (CCD). The significant variables identified through PB design including temperature, substrate-to-moisture ratio, K<sub>2</sub>HPO<sub>4</sub>, peptone, surfactant, inoculum size, inoculum age, incubation time, and pH were further optimized using the CCD approach. This optimization process revealed the most influential factors affecting xylanase & cellulase production, with optimal conditions observed at a temperature of 40◦C, Moisture Proportion, 15 mL; K<sub>2</sub>HPO<sub>4</sub> 6 mM; peptone, 1.55 %; Castor oil 0.5 %; inoculum size, 1.55 % (v/w); inoculum age, 18 h; an incubation time, 87 h. The optimized CCD model displayed a 1.84-fold greater xylanase & cellulose production than the PB design approach. These findings suggest that wheat bran, a readily available agro-waste, could be a feasible alternative to the conventional substrate, beechwood xylan and CMC (Carboxy methyl cellulose) for the production of xylanase & cellulase enzymes with the possibility of achieving higher production levels optimized by using a statistical design approach<strong>.</strong></div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"190 ","pages":"Article 110697"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of physico-chemical parameters for synergistic production of xylano-cellulolytic enzymes by novel Pantoea sp. (PQ584882) under solid-state fermentation using statistical design approach\",\"authors\":\"Neha Maurya , Harsh Sable , Jyoti Chauhan , Amit Kumar , Sharad Agrawal\",\"doi\":\"10.1016/j.enzmictec.2025.110697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Xylanase and cellulase have become increasingly significant due to their versatile applications in the food, paper, biofuel, and pharmaceutical industries. Nevertheless, the current production of these enzymes relies on costly substrates, with estimates indicating that over 30 % of the production expenses are attributed to these substrates. The objective of this study is to optimize the physicochemical parameters for obtaining the maximum production of xylanase & cellulase enzyme from <em>Pantoea sp.</em> (PQ584882). The production conditions were statistically optimized using Plackett-Burman design (PBD) and Central Composite design (CCD). The significant variables identified through PB design including temperature, substrate-to-moisture ratio, K<sub>2</sub>HPO<sub>4</sub>, peptone, surfactant, inoculum size, inoculum age, incubation time, and pH were further optimized using the CCD approach. This optimization process revealed the most influential factors affecting xylanase & cellulase production, with optimal conditions observed at a temperature of 40◦C, Moisture Proportion, 15 mL; K<sub>2</sub>HPO<sub>4</sub> 6 mM; peptone, 1.55 %; Castor oil 0.5 %; inoculum size, 1.55 % (v/w); inoculum age, 18 h; an incubation time, 87 h. The optimized CCD model displayed a 1.84-fold greater xylanase & cellulose production than the PB design approach. These findings suggest that wheat bran, a readily available agro-waste, could be a feasible alternative to the conventional substrate, beechwood xylan and CMC (Carboxy methyl cellulose) for the production of xylanase & cellulase enzymes with the possibility of achieving higher production levels optimized by using a statistical design approach<strong>.</strong></div></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":\"190 \",\"pages\":\"Article 110697\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022925001176\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925001176","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Optimization of physico-chemical parameters for synergistic production of xylano-cellulolytic enzymes by novel Pantoea sp. (PQ584882) under solid-state fermentation using statistical design approach
Xylanase and cellulase have become increasingly significant due to their versatile applications in the food, paper, biofuel, and pharmaceutical industries. Nevertheless, the current production of these enzymes relies on costly substrates, with estimates indicating that over 30 % of the production expenses are attributed to these substrates. The objective of this study is to optimize the physicochemical parameters for obtaining the maximum production of xylanase & cellulase enzyme from Pantoea sp. (PQ584882). The production conditions were statistically optimized using Plackett-Burman design (PBD) and Central Composite design (CCD). The significant variables identified through PB design including temperature, substrate-to-moisture ratio, K2HPO4, peptone, surfactant, inoculum size, inoculum age, incubation time, and pH were further optimized using the CCD approach. This optimization process revealed the most influential factors affecting xylanase & cellulase production, with optimal conditions observed at a temperature of 40◦C, Moisture Proportion, 15 mL; K2HPO4 6 mM; peptone, 1.55 %; Castor oil 0.5 %; inoculum size, 1.55 % (v/w); inoculum age, 18 h; an incubation time, 87 h. The optimized CCD model displayed a 1.84-fold greater xylanase & cellulose production than the PB design approach. These findings suggest that wheat bran, a readily available agro-waste, could be a feasible alternative to the conventional substrate, beechwood xylan and CMC (Carboxy methyl cellulose) for the production of xylanase & cellulase enzymes with the possibility of achieving higher production levels optimized by using a statistical design approach.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.