ADSTAN:无监督跨域电池SOH估计的对抗性动态时空注意网络

IF 9.9 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Lei Wang;Xiaohong Ran;Shuiqing Xu;Xue Ke;Yazhong Zhou
{"title":"ADSTAN:无监督跨域电池SOH估计的对抗性动态时空注意网络","authors":"Lei Wang;Xiaohong Ran;Shuiqing Xu;Xue Ke;Yazhong Zhou","doi":"10.1109/TII.2025.3574372","DOIUrl":null,"url":null,"abstract":"State of health (SOH) estimation is essential for battery health monitoring, particularly in cross-domain scenarios where data variability and domain shifts present significant challenges. To address these issues, this study proposes the adversarial dynamic spatiotemporal attention network (ADSTAN), which integrates a graph attention network for spatial feature extraction, a gated recurrent unit for temporal dependency modeling, and a gradient reversal layer-based domain alignment module for unsupervised domain adaptation. Representing battery health data as dynamic graphs, with each cycle serving as a node, ADSTAN effectively captures spatiotemporal dependencies and dynamically aligns feature distributions between source and target domains. Experiments on cross-domain datasets, including the CALCE and NASA battery datasets, demonstrate the model’s effectiveness. Using data from 10 cycles to predict SOH for 5, 10, and 15 horizons, ADSTAN achieved RMSE values of 2.49%, 2.61%, and 2.94%, respectively. Ablation experiments validated the model’s design, highlighting the superiority of its spatial, temporal, and alignment modules. These results underscore ADSTAN’s robust performance and its suitability for accurate and generalizable SOH estimation in diverse cross-domain settings.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 10","pages":"7575-7586"},"PeriodicalIF":9.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADSTAN: Adversarial Dynamic Spatiotemporal Attention Networks for Unsupervised Cross-Domain Battery SOH Estimation\",\"authors\":\"Lei Wang;Xiaohong Ran;Shuiqing Xu;Xue Ke;Yazhong Zhou\",\"doi\":\"10.1109/TII.2025.3574372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State of health (SOH) estimation is essential for battery health monitoring, particularly in cross-domain scenarios where data variability and domain shifts present significant challenges. To address these issues, this study proposes the adversarial dynamic spatiotemporal attention network (ADSTAN), which integrates a graph attention network for spatial feature extraction, a gated recurrent unit for temporal dependency modeling, and a gradient reversal layer-based domain alignment module for unsupervised domain adaptation. Representing battery health data as dynamic graphs, with each cycle serving as a node, ADSTAN effectively captures spatiotemporal dependencies and dynamically aligns feature distributions between source and target domains. Experiments on cross-domain datasets, including the CALCE and NASA battery datasets, demonstrate the model’s effectiveness. Using data from 10 cycles to predict SOH for 5, 10, and 15 horizons, ADSTAN achieved RMSE values of 2.49%, 2.61%, and 2.94%, respectively. Ablation experiments validated the model’s design, highlighting the superiority of its spatial, temporal, and alignment modules. These results underscore ADSTAN’s robust performance and its suitability for accurate and generalizable SOH estimation in diverse cross-domain settings.\",\"PeriodicalId\":13301,\"journal\":{\"name\":\"IEEE Transactions on Industrial Informatics\",\"volume\":\"21 10\",\"pages\":\"7575-7586\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11050965/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11050965/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

健康状态(SOH)估计对于电池健康监测至关重要,特别是在数据可变性和域转移带来重大挑战的跨域场景中。为了解决这些问题,本研究提出了对抗动态时空注意网络(ADSTAN),该网络集成了用于空间特征提取的图注意网络、用于时间依赖性建模的门控循环单元和用于无监督域自适应的基于梯度反转层的域对齐模块。ADSTAN将电池健康数据表示为动态图形,每个周期作为一个节点,有效地捕获时空依赖关系,并动态地对齐源域和目标域之间的特征分布。在包括CALCE和NASA电池数据集在内的跨域数据集上的实验证明了该模型的有效性。利用10个周期的数据预测5层、10层和15层的SOH, ADSTAN的RMSE值分别为2.49%、2.61%和2.94%。烧蚀实验验证了该模型的设计,突出了其空间、时间和对准模块的优越性。这些结果强调了ADSTAN的稳健性能及其在不同跨域设置中准确和通用的SOH估计的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADSTAN: Adversarial Dynamic Spatiotemporal Attention Networks for Unsupervised Cross-Domain Battery SOH Estimation
State of health (SOH) estimation is essential for battery health monitoring, particularly in cross-domain scenarios where data variability and domain shifts present significant challenges. To address these issues, this study proposes the adversarial dynamic spatiotemporal attention network (ADSTAN), which integrates a graph attention network for spatial feature extraction, a gated recurrent unit for temporal dependency modeling, and a gradient reversal layer-based domain alignment module for unsupervised domain adaptation. Representing battery health data as dynamic graphs, with each cycle serving as a node, ADSTAN effectively captures spatiotemporal dependencies and dynamically aligns feature distributions between source and target domains. Experiments on cross-domain datasets, including the CALCE and NASA battery datasets, demonstrate the model’s effectiveness. Using data from 10 cycles to predict SOH for 5, 10, and 15 horizons, ADSTAN achieved RMSE values of 2.49%, 2.61%, and 2.94%, respectively. Ablation experiments validated the model’s design, highlighting the superiority of its spatial, temporal, and alignment modules. These results underscore ADSTAN’s robust performance and its suitability for accurate and generalizable SOH estimation in diverse cross-domain settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信