Jin Qian, Chenkai Ma, Quin T. Waterbury, Xiaofei Zhi, Christine S. Moon, Ruhong Tu, Hiroki Kobayashi, Feijing Wu, Biyun Zheng, Yi Zeng, Hualong Zheng, Yosuke Ochiai, Ruth A. White, David W. Harle, Jonathan S. LaBella, Leah B. Zamechek, Lucas ZhongMing Hu, Ryan H. Moy, Arnold S. Han, Bruce L. Daugherty, Timothy C. Wang
{"title":"一种CXCR4部分激动剂通过靶向免疫抑制性中性粒细胞和癌症驱动的粒细胞生成来改善免疫治疗","authors":"Jin Qian, Chenkai Ma, Quin T. Waterbury, Xiaofei Zhi, Christine S. Moon, Ruhong Tu, Hiroki Kobayashi, Feijing Wu, Biyun Zheng, Yi Zeng, Hualong Zheng, Yosuke Ochiai, Ruth A. White, David W. Harle, Jonathan S. LaBella, Leah B. Zamechek, Lucas ZhongMing Hu, Ryan H. Moy, Arnold S. Han, Bruce L. Daugherty, Timothy C. Wang","doi":"10.1016/j.ccell.2025.06.006","DOIUrl":null,"url":null,"abstract":"Pathologically activated immunosuppressive neutrophils impair cancer immunotherapy efficacy. The chemokine receptor CXCR4, a central regulator of hematopoiesis and neutrophil biology, represents an attractive target. Here, we fuse a secreted CXCR4 partial agonist, trefoil factor 2 (TFF2), to mouse serum albumin (MSA) and demonstrate that TFF2-MSA peptide synergizes with anti-PD-1 to inhibit primary tumor growth and distant metastases and prolongs survival in gastric cancer (GC) mouse models. Using histidine decarboxylase (<em>Hdc</em>)-GFP transgenic mice to track polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) <em>in vivo</em>, we find that TFF2-MSA selectively reduces the <em>Hdc</em>-GFP<sup>+</sup>CXCR4<sup>high</sup> immunosuppressive neutrophils, thereby boosting CD8<sup>+</sup> T cell-mediated tumor killing with anti-PD-1. Importantly, TFF2-MSA reduces bone marrow granulopoiesis, contrasting with CXCR4 antagonism, which fails to confer therapeutic benefits. In GC patients, elevated CXCR4<sup>+</sup>LOX-1<sup>+</sup> low-density neutrophils correlate with lower circulating TFF2 levels. Collectively, our studies introduce a strategy that utilizes CXCR4 partial agonism to restore anti-PD-1 sensitivity by targeting immunosuppressive neutrophils and granulopoiesis.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"653 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CXCR4 partial agonist improves immunotherapy by targeting immunosuppressive neutrophils and cancer-driven granulopoiesis\",\"authors\":\"Jin Qian, Chenkai Ma, Quin T. Waterbury, Xiaofei Zhi, Christine S. Moon, Ruhong Tu, Hiroki Kobayashi, Feijing Wu, Biyun Zheng, Yi Zeng, Hualong Zheng, Yosuke Ochiai, Ruth A. White, David W. Harle, Jonathan S. LaBella, Leah B. Zamechek, Lucas ZhongMing Hu, Ryan H. Moy, Arnold S. Han, Bruce L. Daugherty, Timothy C. Wang\",\"doi\":\"10.1016/j.ccell.2025.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathologically activated immunosuppressive neutrophils impair cancer immunotherapy efficacy. The chemokine receptor CXCR4, a central regulator of hematopoiesis and neutrophil biology, represents an attractive target. Here, we fuse a secreted CXCR4 partial agonist, trefoil factor 2 (TFF2), to mouse serum albumin (MSA) and demonstrate that TFF2-MSA peptide synergizes with anti-PD-1 to inhibit primary tumor growth and distant metastases and prolongs survival in gastric cancer (GC) mouse models. Using histidine decarboxylase (<em>Hdc</em>)-GFP transgenic mice to track polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) <em>in vivo</em>, we find that TFF2-MSA selectively reduces the <em>Hdc</em>-GFP<sup>+</sup>CXCR4<sup>high</sup> immunosuppressive neutrophils, thereby boosting CD8<sup>+</sup> T cell-mediated tumor killing with anti-PD-1. Importantly, TFF2-MSA reduces bone marrow granulopoiesis, contrasting with CXCR4 antagonism, which fails to confer therapeutic benefits. In GC patients, elevated CXCR4<sup>+</sup>LOX-1<sup>+</sup> low-density neutrophils correlate with lower circulating TFF2 levels. Collectively, our studies introduce a strategy that utilizes CXCR4 partial agonism to restore anti-PD-1 sensitivity by targeting immunosuppressive neutrophils and granulopoiesis.\",\"PeriodicalId\":9670,\"journal\":{\"name\":\"Cancer Cell\",\"volume\":\"653 1\",\"pages\":\"\"},\"PeriodicalIF\":48.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ccell.2025.06.006\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.06.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A CXCR4 partial agonist improves immunotherapy by targeting immunosuppressive neutrophils and cancer-driven granulopoiesis
Pathologically activated immunosuppressive neutrophils impair cancer immunotherapy efficacy. The chemokine receptor CXCR4, a central regulator of hematopoiesis and neutrophil biology, represents an attractive target. Here, we fuse a secreted CXCR4 partial agonist, trefoil factor 2 (TFF2), to mouse serum albumin (MSA) and demonstrate that TFF2-MSA peptide synergizes with anti-PD-1 to inhibit primary tumor growth and distant metastases and prolongs survival in gastric cancer (GC) mouse models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) in vivo, we find that TFF2-MSA selectively reduces the Hdc-GFP+CXCR4high immunosuppressive neutrophils, thereby boosting CD8+ T cell-mediated tumor killing with anti-PD-1. Importantly, TFF2-MSA reduces bone marrow granulopoiesis, contrasting with CXCR4 antagonism, which fails to confer therapeutic benefits. In GC patients, elevated CXCR4+LOX-1+ low-density neutrophils correlate with lower circulating TFF2 levels. Collectively, our studies introduce a strategy that utilizes CXCR4 partial agonism to restore anti-PD-1 sensitivity by targeting immunosuppressive neutrophils and granulopoiesis.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.