{"title":"基于场景级标注的点云分割高质量伪标记。","authors":"Lunhao Duan,Shanshan Zhao,Xingxing Weng,Jing Zhang,Gui-Song Xia","doi":"10.1109/tpami.2025.3583071","DOIUrl":null,"url":null,"abstract":"This paper investigates indoor point cloud semantic segmentation under scene-level annotation, which is less explored compared to methods relying on sparse point-level labels. In the absence of precise point-level labels, current methods first generate point-level pseudo-labels, which are then used to train segmentation models. However, generating accurate pseudo-labels for each point solely based on scene-level annotations poses a considerable challenge, substantially affecting segmentation performance. Consequently, to enhance accuracy, this paper proposes a high-quality pseudo-label generation framework by exploring contemporary multi-modal information and region-point semantic consistency. Specifically, with a cross-modal feature guidance module, our method utilizes 2D-3D correspondences to align point cloud features with corresponding 2D image pixels, thereby assisting point cloud feature learning. To further alleviate the challenge presented by the scene-level annotation, we introduce a region-point semantic consistency module. It produces regional semantics through a region-voting strategy derived from point-level semantics, which are subsequently employed to guide the point-level semantic predictions. Leveraging the aforementioned modules, our method can rectify inaccurate point-level semantic predictions during training and obtain high-quality pseudo-labels. Significant improvements over previous works on ScanNet v2 and S3DIS datasets under scene-level annotation can demonstrate the effectiveness. Additionally, comprehensive ablation studies validate the contributions of our approach's individual components. The code is available at https://github.com/LHDuan/WSegPC.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"148 1","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-quality Pseudo-labeling for Point Cloud Segmentation with Scene-level Annotation.\",\"authors\":\"Lunhao Duan,Shanshan Zhao,Xingxing Weng,Jing Zhang,Gui-Song Xia\",\"doi\":\"10.1109/tpami.2025.3583071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates indoor point cloud semantic segmentation under scene-level annotation, which is less explored compared to methods relying on sparse point-level labels. In the absence of precise point-level labels, current methods first generate point-level pseudo-labels, which are then used to train segmentation models. However, generating accurate pseudo-labels for each point solely based on scene-level annotations poses a considerable challenge, substantially affecting segmentation performance. Consequently, to enhance accuracy, this paper proposes a high-quality pseudo-label generation framework by exploring contemporary multi-modal information and region-point semantic consistency. Specifically, with a cross-modal feature guidance module, our method utilizes 2D-3D correspondences to align point cloud features with corresponding 2D image pixels, thereby assisting point cloud feature learning. To further alleviate the challenge presented by the scene-level annotation, we introduce a region-point semantic consistency module. It produces regional semantics through a region-voting strategy derived from point-level semantics, which are subsequently employed to guide the point-level semantic predictions. Leveraging the aforementioned modules, our method can rectify inaccurate point-level semantic predictions during training and obtain high-quality pseudo-labels. Significant improvements over previous works on ScanNet v2 and S3DIS datasets under scene-level annotation can demonstrate the effectiveness. Additionally, comprehensive ablation studies validate the contributions of our approach's individual components. The code is available at https://github.com/LHDuan/WSegPC.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":20.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tpami.2025.3583071\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tpami.2025.3583071","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
High-quality Pseudo-labeling for Point Cloud Segmentation with Scene-level Annotation.
This paper investigates indoor point cloud semantic segmentation under scene-level annotation, which is less explored compared to methods relying on sparse point-level labels. In the absence of precise point-level labels, current methods first generate point-level pseudo-labels, which are then used to train segmentation models. However, generating accurate pseudo-labels for each point solely based on scene-level annotations poses a considerable challenge, substantially affecting segmentation performance. Consequently, to enhance accuracy, this paper proposes a high-quality pseudo-label generation framework by exploring contemporary multi-modal information and region-point semantic consistency. Specifically, with a cross-modal feature guidance module, our method utilizes 2D-3D correspondences to align point cloud features with corresponding 2D image pixels, thereby assisting point cloud feature learning. To further alleviate the challenge presented by the scene-level annotation, we introduce a region-point semantic consistency module. It produces regional semantics through a region-voting strategy derived from point-level semantics, which are subsequently employed to guide the point-level semantic predictions. Leveraging the aforementioned modules, our method can rectify inaccurate point-level semantic predictions during training and obtain high-quality pseudo-labels. Significant improvements over previous works on ScanNet v2 and S3DIS datasets under scene-level annotation can demonstrate the effectiveness. Additionally, comprehensive ablation studies validate the contributions of our approach's individual components. The code is available at https://github.com/LHDuan/WSegPC.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.