{"title":"基于场景级标注的点云分割高质量伪标记。","authors":"Lunhao Duan;Shanshan Zhao;Xingxing Weng;Jing Zhang;Gui-Song Xia","doi":"10.1109/TPAMI.2025.3583071","DOIUrl":null,"url":null,"abstract":"This paper investigates indoor point cloud semantic segmentation under scene-level annotation, which is less explored compared to methods relying on sparse point-level labels. In the absence of precise point-level labels, current methods first generate point-level pseudo-labels, which are then used to train segmentation models. However, generating accurate pseudo-labels for each point solely based on scene-level annotations poses a considerable challenge, substantially affecting segmentation performance. Consequently, to enhance accuracy, this paper proposes a high-quality pseudo-label generation framework by exploring contemporary multi-modal information and region-point semantic consistency. Specifically, with a cross-modal feature guidance module, our method utilizes 2D-3D correspondences to align point cloud features with corresponding 2D image pixels, thereby assisting point cloud feature learning. To further alleviate the challenge presented by the scene-level annotation, we introduce a region-point semantic consistency module. It produces regional semantics through a region-voting strategy derived from point-level semantics, which are subsequently employed to guide the point-level semantic predictions. Leveraging the aforementioned modules, our method can rectify inaccurate point-level semantic predictions during training and obtain high-quality pseudo-labels. Significant improvements over previous works on ScanNet v2 and S3DIS datasets under scene-level annotation can demonstrate the effectiveness. Additionally, comprehensive ablation studies validate the contributions of our approach’s individual components.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"9360-9366"},"PeriodicalIF":18.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Quality Pseudo-Labeling for Point Cloud Segmentation With Scene-Level Annotation\",\"authors\":\"Lunhao Duan;Shanshan Zhao;Xingxing Weng;Jing Zhang;Gui-Song Xia\",\"doi\":\"10.1109/TPAMI.2025.3583071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates indoor point cloud semantic segmentation under scene-level annotation, which is less explored compared to methods relying on sparse point-level labels. In the absence of precise point-level labels, current methods first generate point-level pseudo-labels, which are then used to train segmentation models. However, generating accurate pseudo-labels for each point solely based on scene-level annotations poses a considerable challenge, substantially affecting segmentation performance. Consequently, to enhance accuracy, this paper proposes a high-quality pseudo-label generation framework by exploring contemporary multi-modal information and region-point semantic consistency. Specifically, with a cross-modal feature guidance module, our method utilizes 2D-3D correspondences to align point cloud features with corresponding 2D image pixels, thereby assisting point cloud feature learning. To further alleviate the challenge presented by the scene-level annotation, we introduce a region-point semantic consistency module. It produces regional semantics through a region-voting strategy derived from point-level semantics, which are subsequently employed to guide the point-level semantic predictions. Leveraging the aforementioned modules, our method can rectify inaccurate point-level semantic predictions during training and obtain high-quality pseudo-labels. Significant improvements over previous works on ScanNet v2 and S3DIS datasets under scene-level annotation can demonstrate the effectiveness. Additionally, comprehensive ablation studies validate the contributions of our approach’s individual components.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 10\",\"pages\":\"9360-9366\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11050997/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11050997/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Quality Pseudo-Labeling for Point Cloud Segmentation With Scene-Level Annotation
This paper investigates indoor point cloud semantic segmentation under scene-level annotation, which is less explored compared to methods relying on sparse point-level labels. In the absence of precise point-level labels, current methods first generate point-level pseudo-labels, which are then used to train segmentation models. However, generating accurate pseudo-labels for each point solely based on scene-level annotations poses a considerable challenge, substantially affecting segmentation performance. Consequently, to enhance accuracy, this paper proposes a high-quality pseudo-label generation framework by exploring contemporary multi-modal information and region-point semantic consistency. Specifically, with a cross-modal feature guidance module, our method utilizes 2D-3D correspondences to align point cloud features with corresponding 2D image pixels, thereby assisting point cloud feature learning. To further alleviate the challenge presented by the scene-level annotation, we introduce a region-point semantic consistency module. It produces regional semantics through a region-voting strategy derived from point-level semantics, which are subsequently employed to guide the point-level semantic predictions. Leveraging the aforementioned modules, our method can rectify inaccurate point-level semantic predictions during training and obtain high-quality pseudo-labels. Significant improvements over previous works on ScanNet v2 and S3DIS datasets under scene-level annotation can demonstrate the effectiveness. Additionally, comprehensive ablation studies validate the contributions of our approach’s individual components.