基于基因表达数据的机器学习的种族特异性前列腺癌检测框架:特征选择优化方法。

David Agustriawan, Adithama Mulia, Marlinda Vasty Overbeek, Vincent Kurniawan, Jheno Syechlo, Moeljono Widjaja, Muhammad Imran Ahmad
{"title":"基于基因表达数据的机器学习的种族特异性前列腺癌检测框架:特征选择优化方法。","authors":"David Agustriawan, Adithama Mulia, Marlinda Vasty Overbeek, Vincent Kurniawan, Jheno Syechlo, Moeljono Widjaja, Muhammad Imran Ahmad","doi":"10.2196/72423","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous machine learning approaches for prostate cancer detection using gene expression data have shown remarkable classification accuracies. However, prior studies overlook the influence of racial diversity within the population and the importance of selecting outlier genes based on expression profiles.</p><p><strong>Objective: </strong>To develop a classification method for diagnosing prostate cancer using gene expression in specific populations.</p><p><strong>Methods: </strong>This research uses Differentially Expressed Gene (DEG) analysis, Receiver Operating Characteristic (ROC) analysis, and MSigDB verification as a feature selection framework to identify genes for constructing Support Vector Machine (SVM) models.</p><p><strong>Results: </strong>Among the models evaluated, the highest observed accuracy was achieved using 139 gene features without oversampling, resulting in 98% accuracy for white patients and 97% for African American patients, based on 388 training samples and 92 testing samples. Notably, another model achieved similarly strong performance 97% accuracy for white and 95% for African American patients while using only 9 gene features, trained on 374 samples and tested on 138 samples.</p><p><strong>Conclusions: </strong>The findings identify a race-specific diagnosis method for prostate cancer detection using enhanced feature selection and machine learning. This approach emphasizes the potential for developing unbiased diagnostic tools in specific populations.</p>","PeriodicalId":73552,"journal":{"name":"JMIR bioinformatics and biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Race-Specific Prostate Cancer Detection Using Machine Learning Through Gene Expression Data: Feature Selection Optimization Approach.\",\"authors\":\"David Agustriawan, Adithama Mulia, Marlinda Vasty Overbeek, Vincent Kurniawan, Jheno Syechlo, Moeljono Widjaja, Muhammad Imran Ahmad\",\"doi\":\"10.2196/72423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous machine learning approaches for prostate cancer detection using gene expression data have shown remarkable classification accuracies. However, prior studies overlook the influence of racial diversity within the population and the importance of selecting outlier genes based on expression profiles.</p><p><strong>Objective: </strong>To develop a classification method for diagnosing prostate cancer using gene expression in specific populations.</p><p><strong>Methods: </strong>This research uses Differentially Expressed Gene (DEG) analysis, Receiver Operating Characteristic (ROC) analysis, and MSigDB verification as a feature selection framework to identify genes for constructing Support Vector Machine (SVM) models.</p><p><strong>Results: </strong>Among the models evaluated, the highest observed accuracy was achieved using 139 gene features without oversampling, resulting in 98% accuracy for white patients and 97% for African American patients, based on 388 training samples and 92 testing samples. Notably, another model achieved similarly strong performance 97% accuracy for white and 95% for African American patients while using only 9 gene features, trained on 374 samples and tested on 138 samples.</p><p><strong>Conclusions: </strong>The findings identify a race-specific diagnosis method for prostate cancer detection using enhanced feature selection and machine learning. This approach emphasizes the potential for developing unbiased diagnostic tools in specific populations.</p>\",\"PeriodicalId\":73552,\"journal\":{\"name\":\"JMIR bioinformatics and biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR bioinformatics and biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/72423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR bioinformatics and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/72423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:以前使用基因表达数据进行前列腺癌检测的机器学习方法已经显示出显著的分类准确性。然而,先前的研究忽略了人群中种族多样性的影响以及基于表达谱选择异常基因的重要性。目的:建立基于特定人群基因表达的前列腺癌分类诊断方法。方法:采用差异表达基因(differential expression Gene, DEG)分析、受试者工作特征(Receiver Operating Characteristic, ROC)分析和MSigDB验证作为特征选择框架,识别用于构建支持向量机(SVM)模型的基因。结果:在评估的模型中,基于388个训练样本和92个测试样本,使用139个基因特征实现了最高的观察准确性,白人患者的准确率为98%,非洲裔美国患者的准确率为97%。值得注意的是,另一个模型在仅使用9个基因特征,对374个样本进行训练并对138个样本进行测试的情况下,对白人患者的准确率达到97%,对非裔美国患者的准确率达到95%。结论:研究结果确定了一种使用增强的特征选择和机器学习来检测前列腺癌的种族特异性诊断方法。这种方法强调了在特定人群中开发无偏见诊断工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Race-Specific Prostate Cancer Detection Using Machine Learning Through Gene Expression Data: Feature Selection Optimization Approach.

Background: Previous machine learning approaches for prostate cancer detection using gene expression data have shown remarkable classification accuracies. However, prior studies overlook the influence of racial diversity within the population and the importance of selecting outlier genes based on expression profiles.

Objective: To develop a classification method for diagnosing prostate cancer using gene expression in specific populations.

Methods: This research uses Differentially Expressed Gene (DEG) analysis, Receiver Operating Characteristic (ROC) analysis, and MSigDB verification as a feature selection framework to identify genes for constructing Support Vector Machine (SVM) models.

Results: Among the models evaluated, the highest observed accuracy was achieved using 139 gene features without oversampling, resulting in 98% accuracy for white patients and 97% for African American patients, based on 388 training samples and 92 testing samples. Notably, another model achieved similarly strong performance 97% accuracy for white and 95% for African American patients while using only 9 gene features, trained on 374 samples and tested on 138 samples.

Conclusions: The findings identify a race-specific diagnosis method for prostate cancer detection using enhanced feature selection and machine learning. This approach emphasizes the potential for developing unbiased diagnostic tools in specific populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信