淀粉样蛋白PET成像中吉布斯伪影识别异常检测系统的开发。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Mitsuru Sato, Hiromitsu Daisaki, Haruyuki Watanabe, Saaya Isogai, Manami Shiga, Yasuhiko Ikari, Keisuke Tsuda, Kenji Hirata, Ukihide Tateishi, Kazuaki Mori, Makoto Hosono, Hirofumi Fujii
{"title":"淀粉样蛋白PET成像中吉布斯伪影识别异常检测系统的开发。","authors":"Mitsuru Sato, Hiromitsu Daisaki, Haruyuki Watanabe, Saaya Isogai, Manami Shiga, Yasuhiko Ikari, Keisuke Tsuda, Kenji Hirata, Ukihide Tateishi, Kazuaki Mori, Makoto Hosono, Hirofumi Fujii","doi":"10.1007/s12194-025-00928-9","DOIUrl":null,"url":null,"abstract":"<p><p>The PET Imaging Site Qualification Program for amyloid positron emission tomography (PET) in Japan includes visual evaluation of the cylinder phantom. This visual evaluation requires observation of the entire image of the phantom and confirmation of the absence of apparent artifacts. Because the evaluation is visually performed, inter-observer differences might exist among evaluators for difficult cases. Therefore, the workload of the staff who perform approval tasks must be reduced, and objective evaluation methods are needed. Thus, we attempted to develop an artificial-intelligence-based objective method for anomaly detection. Three artificial intelligence methods for anomaly detection were developed, and their accuracy was evaluated using AutoEncoder, AnoGAN, and a method combining feature extraction using AlexNet and a one-class support vector machine. In total, 10,207 normal images from 128 facilities and 594 abnormal images from eight facilities, all of which were submitted as part of application for amyloid PET certification, were used. Group five-fold cross-validation was employed for artificial intelligence training and evaluation. In addition, the performance of each artificial intelligence method was assessed using receiver operating characteristic analysis. The areas under the curve for anomaly detection using AutoEncoder, AnoGAN, and the method combining feature extraction using AlexNet and a one-class support vector machine were 0.80 ± 0.04, 0.77 ± 0.03, and 0.99 ± 0.01, respectively. Artificial intelligence effectively distinguished between normal and abnormal images with high accuracy. In the future, its practical implementation is anticipated to reduce the workload in the approval work for the Japanese site qualification program for amyloid PET.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an anomaly detection system for Gibbs artifact identification in amyloid PET imaging.\",\"authors\":\"Mitsuru Sato, Hiromitsu Daisaki, Haruyuki Watanabe, Saaya Isogai, Manami Shiga, Yasuhiko Ikari, Keisuke Tsuda, Kenji Hirata, Ukihide Tateishi, Kazuaki Mori, Makoto Hosono, Hirofumi Fujii\",\"doi\":\"10.1007/s12194-025-00928-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The PET Imaging Site Qualification Program for amyloid positron emission tomography (PET) in Japan includes visual evaluation of the cylinder phantom. This visual evaluation requires observation of the entire image of the phantom and confirmation of the absence of apparent artifacts. Because the evaluation is visually performed, inter-observer differences might exist among evaluators for difficult cases. Therefore, the workload of the staff who perform approval tasks must be reduced, and objective evaluation methods are needed. Thus, we attempted to develop an artificial-intelligence-based objective method for anomaly detection. Three artificial intelligence methods for anomaly detection were developed, and their accuracy was evaluated using AutoEncoder, AnoGAN, and a method combining feature extraction using AlexNet and a one-class support vector machine. In total, 10,207 normal images from 128 facilities and 594 abnormal images from eight facilities, all of which were submitted as part of application for amyloid PET certification, were used. Group five-fold cross-validation was employed for artificial intelligence training and evaluation. In addition, the performance of each artificial intelligence method was assessed using receiver operating characteristic analysis. The areas under the curve for anomaly detection using AutoEncoder, AnoGAN, and the method combining feature extraction using AlexNet and a one-class support vector machine were 0.80 ± 0.04, 0.77 ± 0.03, and 0.99 ± 0.01, respectively. Artificial intelligence effectively distinguished between normal and abnormal images with high accuracy. In the future, its practical implementation is anticipated to reduce the workload in the approval work for the Japanese site qualification program for amyloid PET.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00928-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00928-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

在日本,淀粉样正电子发射断层扫描(PET)的PET成像部位鉴定项目包括对圆柱体幻像的视觉评估。这种视觉评估需要观察幻影的整个图像,并确认没有明显的伪影。由于评估是目视进行的,在困难的情况下,评估者之间可能存在观察者之间的差异。因此,必须减少执行审批任务的工作人员的工作量,并需要客观的评价方法。因此,我们试图开发一种基于人工智能的客观异常检测方法。提出了三种人工智能异常检测方法,分别使用AutoEncoder、AnoGAN和AlexNet特征提取与一类支持向量机相结合的方法对其检测精度进行了评价。总共使用了来自128个设施的10207张正常图像和来自8个设施的594张异常图像,这些图像都是作为淀粉样蛋白PET认证申请的一部分提交的。采用组五重交叉验证进行人工智能训练和评估。此外,利用接收机工作特性分析对每种人工智能方法的性能进行了评估。采用AutoEncoder、AnoGAN和AlexNet特征提取与一类支持向量机相结合的方法进行异常检测的曲线下面积分别为0.80±0.04、0.77±0.03和0.99±0.01。人工智能能有效区分正常和异常图像,准确率高。在未来,它的实际实施有望减少淀粉样PET日本站点资格计划的审批工作的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an anomaly detection system for Gibbs artifact identification in amyloid PET imaging.

The PET Imaging Site Qualification Program for amyloid positron emission tomography (PET) in Japan includes visual evaluation of the cylinder phantom. This visual evaluation requires observation of the entire image of the phantom and confirmation of the absence of apparent artifacts. Because the evaluation is visually performed, inter-observer differences might exist among evaluators for difficult cases. Therefore, the workload of the staff who perform approval tasks must be reduced, and objective evaluation methods are needed. Thus, we attempted to develop an artificial-intelligence-based objective method for anomaly detection. Three artificial intelligence methods for anomaly detection were developed, and their accuracy was evaluated using AutoEncoder, AnoGAN, and a method combining feature extraction using AlexNet and a one-class support vector machine. In total, 10,207 normal images from 128 facilities and 594 abnormal images from eight facilities, all of which were submitted as part of application for amyloid PET certification, were used. Group five-fold cross-validation was employed for artificial intelligence training and evaluation. In addition, the performance of each artificial intelligence method was assessed using receiver operating characteristic analysis. The areas under the curve for anomaly detection using AutoEncoder, AnoGAN, and the method combining feature extraction using AlexNet and a one-class support vector machine were 0.80 ± 0.04, 0.77 ± 0.03, and 0.99 ± 0.01, respectively. Artificial intelligence effectively distinguished between normal and abnormal images with high accuracy. In the future, its practical implementation is anticipated to reduce the workload in the approval work for the Japanese site qualification program for amyloid PET.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信