{"title":"药物相互作用中熵和疏水效应的问题归因。","authors":"Hans-Jörg Schneider","doi":"10.1021/acsbiomedchemau.4c00148","DOIUrl":null,"url":null,"abstract":"<p><p>The ΔG affinity of drugs with biopolymers and the underling noncovalent interactions play an essential role in drug discovery. Supramolecular complexes can be designed for the identification and quantification of specific interactions, including their dependence on the medium; they also secure the additivity of ΔΔG increments. Such analyses have helped to clarify hydrophobic effects in intermolecular associations, which are barely measurable with small alkyl groups, but large in the presence of curved surfaces in which the replacement of hydrogen bond-deficient water molecules by a ligand leads to sizable enthalpy gain. Difficult to predict entropy contributions TΔS to ΔG vary between 5% and over 90%, particularly in drug associations, as is obvious from literature data. As illustrated with several drug complexes, many so-called hydrophobic effects involve in fact van der Waals or dispersive interactions. Measurements with supramolecular porphyrin complexes allowed us to derive dispersive binding contributions for many groups, which exhibit a correlation with polarizability. In consequence, heteroatoms or π-systems always lead to enhanced van der Waals contributions, while for hydrophobic effects the opposite is expected. Binding contributions from supramolecular complexes can in the future also help artificial intelligence approaches in drug discovery, by expansion of hybrid databases with potential ligands containing groups with desired binding contributions.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 3","pages":"334-341"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183581/pdf/","citationCount":"0","resultStr":"{\"title\":\"Problematic Attributions of Entropic and Hydrophobic Effects in Drug Interactions.\",\"authors\":\"Hans-Jörg Schneider\",\"doi\":\"10.1021/acsbiomedchemau.4c00148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ΔG affinity of drugs with biopolymers and the underling noncovalent interactions play an essential role in drug discovery. Supramolecular complexes can be designed for the identification and quantification of specific interactions, including their dependence on the medium; they also secure the additivity of ΔΔG increments. Such analyses have helped to clarify hydrophobic effects in intermolecular associations, which are barely measurable with small alkyl groups, but large in the presence of curved surfaces in which the replacement of hydrogen bond-deficient water molecules by a ligand leads to sizable enthalpy gain. Difficult to predict entropy contributions TΔS to ΔG vary between 5% and over 90%, particularly in drug associations, as is obvious from literature data. As illustrated with several drug complexes, many so-called hydrophobic effects involve in fact van der Waals or dispersive interactions. Measurements with supramolecular porphyrin complexes allowed us to derive dispersive binding contributions for many groups, which exhibit a correlation with polarizability. In consequence, heteroatoms or π-systems always lead to enhanced van der Waals contributions, while for hydrophobic effects the opposite is expected. Binding contributions from supramolecular complexes can in the future also help artificial intelligence approaches in drug discovery, by expansion of hybrid databases with potential ligands containing groups with desired binding contributions.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"5 3\",\"pages\":\"334-341\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomedchemau.4c00148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsbiomedchemau.4c00148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
ΔG药物与生物聚合物的亲和性及其非共价相互作用在药物发现中起着至关重要的作用。可以设计超分子复合物来鉴定和定量特定的相互作用,包括它们对介质的依赖;它们还保证了ΔΔG增量的可加性。这样的分析有助于澄清分子间缔合中的疏水效应,这种效应在小烷基中几乎无法测量,但在弯曲表面中,配体取代缺乏氢键的水分子会导致相当大的焓增益。很难预测熵贡献TΔS到ΔG在5%到90%以上之间变化,特别是在药物关联中,从文献数据中可以明显看出。正如几种药物复合物所说明的那样,许多所谓的疏水效应实际上涉及范德华作用或色散相互作用。超分子卟啉复合物的测量使我们能够得出许多基团的分散结合贡献,这与极化率有关。因此,杂原子或π系总是导致van der Waals贡献的增强,而对于疏水效应则相反。超分子复合物的结合贡献在未来也可以帮助人工智能方法在药物发现中,通过扩展含有具有期望结合贡献基团的潜在配体的混合数据库。
Problematic Attributions of Entropic and Hydrophobic Effects in Drug Interactions.
The ΔG affinity of drugs with biopolymers and the underling noncovalent interactions play an essential role in drug discovery. Supramolecular complexes can be designed for the identification and quantification of specific interactions, including their dependence on the medium; they also secure the additivity of ΔΔG increments. Such analyses have helped to clarify hydrophobic effects in intermolecular associations, which are barely measurable with small alkyl groups, but large in the presence of curved surfaces in which the replacement of hydrogen bond-deficient water molecules by a ligand leads to sizable enthalpy gain. Difficult to predict entropy contributions TΔS to ΔG vary between 5% and over 90%, particularly in drug associations, as is obvious from literature data. As illustrated with several drug complexes, many so-called hydrophobic effects involve in fact van der Waals or dispersive interactions. Measurements with supramolecular porphyrin complexes allowed us to derive dispersive binding contributions for many groups, which exhibit a correlation with polarizability. In consequence, heteroatoms or π-systems always lead to enhanced van der Waals contributions, while for hydrophobic effects the opposite is expected. Binding contributions from supramolecular complexes can in the future also help artificial intelligence approaches in drug discovery, by expansion of hybrid databases with potential ligands containing groups with desired binding contributions.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.