合成黑色素添加剂的抗紫外线无细胞反应。

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2025-07-18 Epub Date: 2025-06-24 DOI:10.1021/acssynbio.5c00212
Lauren M Irie, Dylan M Brown, Julius B Lucks, Nathan C Gianneschi
{"title":"合成黑色素添加剂的抗紫外线无细胞反应。","authors":"Lauren M Irie, Dylan M Brown, Julius B Lucks, Nathan C Gianneschi","doi":"10.1021/acssynbio.5c00212","DOIUrl":null,"url":null,"abstract":"<p><p><i>Escherichia coli</i> lysate-based cell-free systems have gained traction for a variety of point-of-use biological applications. Lysate-based cell-free reactions can be freeze-dried, deployed without requiring cold chain, and have a high ease of use through simple rehydration. To maximize their potential, it is of interest to stabilize these reactions to withstand a variety of conditions for long-term storage and use, including stabilization to UV exposure. To address this issue and aid in point-of-use applications, we investigate the use of synthetic melanin nanoparticles as UV-protective additives that are compatible with cell-free reactions. These particles have broadband absorption properties and radical scavenging activity that allow for protection from free radical generation during prolonged UV exposure. Stabilizing cell-free reactions in this way may prolong the stability for use in the field where exposure to sunlight is inevitable.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"2821-2831"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-Resistant Cell-Free Reactions with Synthetic Melanin Additives.\",\"authors\":\"Lauren M Irie, Dylan M Brown, Julius B Lucks, Nathan C Gianneschi\",\"doi\":\"10.1021/acssynbio.5c00212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Escherichia coli</i> lysate-based cell-free systems have gained traction for a variety of point-of-use biological applications. Lysate-based cell-free reactions can be freeze-dried, deployed without requiring cold chain, and have a high ease of use through simple rehydration. To maximize their potential, it is of interest to stabilize these reactions to withstand a variety of conditions for long-term storage and use, including stabilization to UV exposure. To address this issue and aid in point-of-use applications, we investigate the use of synthetic melanin nanoparticles as UV-protective additives that are compatible with cell-free reactions. These particles have broadband absorption properties and radical scavenging activity that allow for protection from free radical generation during prolonged UV exposure. Stabilizing cell-free reactions in this way may prolong the stability for use in the field where exposure to sunlight is inevitable.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"2821-2831\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.5c00212\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00212","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基于大肠杆菌裂解物的无细胞系统已经获得了各种使用点生物应用的牵引力。基于裂解液的无细胞反应可以冷冻干燥,不需要冷链,并且通过简单的再水合作用具有很高的易用性。为了最大限度地发挥其潜力,稳定这些反应以承受各种长期储存和使用条件是很有意义的,包括稳定紫外线暴露。为了解决这一问题并在使用点应用中提供帮助,我们研究了合成黑色素纳米颗粒作为与无细胞反应兼容的防紫外线添加剂的使用。这些颗粒具有宽带吸收特性和自由基清除活性,可以在长时间暴露于紫外线下时保护自由基的产生。以这种方式稳定无细胞反应可以延长在不可避免地暴露在阳光下的野外使用的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UV-Resistant Cell-Free Reactions with Synthetic Melanin Additives.

Escherichia coli lysate-based cell-free systems have gained traction for a variety of point-of-use biological applications. Lysate-based cell-free reactions can be freeze-dried, deployed without requiring cold chain, and have a high ease of use through simple rehydration. To maximize their potential, it is of interest to stabilize these reactions to withstand a variety of conditions for long-term storage and use, including stabilization to UV exposure. To address this issue and aid in point-of-use applications, we investigate the use of synthetic melanin nanoparticles as UV-protective additives that are compatible with cell-free reactions. These particles have broadband absorption properties and radical scavenging activity that allow for protection from free radical generation during prolonged UV exposure. Stabilizing cell-free reactions in this way may prolong the stability for use in the field where exposure to sunlight is inevitable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信