{"title":"微生物动态调控工具:设计、应用和前景。","authors":"Haibin Qin, Junping Zhou, Aiping Pang, Lianggang Huang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1021/acssynbio.5c00219","DOIUrl":null,"url":null,"abstract":"<p><p>Establishing efficient microbial cell factories for the production of functional nutraceuticals, pharmaceuticals, biofuels, and chemical products requires precise regulation to adapt key enzymes and pathway modules. Dynamic regulatory strategies are a promising and effective approach to achieve balanced cell growth and metabolite production. Dynamic regulatory tools, as the executors of regulatory strategies, usually require rationally designed modification strategies to provide libraries of tools with reliable quality. Here, typical dynamic regulatory tools at the DNA level (transcriptional level), the RNA level (post-transcriptional and translational level), and the protein level (post-translational) are presented. The regulatory mechanisms and design modification strategies of each tool are highlighted. Subsequently, strategies for applying regulatory tools to construct dynamic regulatory networks of metabolic pathways are summarized. Finally, the limitations of current dynamic regulatory tools are discussed and future trends are outlooked.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"2418-2432"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial Dynamic Regulatory Tools: Design, Applications, and Prospects.\",\"authors\":\"Haibin Qin, Junping Zhou, Aiping Pang, Lianggang Huang, Zhiqiang Liu, Yuguo Zheng\",\"doi\":\"10.1021/acssynbio.5c00219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Establishing efficient microbial cell factories for the production of functional nutraceuticals, pharmaceuticals, biofuels, and chemical products requires precise regulation to adapt key enzymes and pathway modules. Dynamic regulatory strategies are a promising and effective approach to achieve balanced cell growth and metabolite production. Dynamic regulatory tools, as the executors of regulatory strategies, usually require rationally designed modification strategies to provide libraries of tools with reliable quality. Here, typical dynamic regulatory tools at the DNA level (transcriptional level), the RNA level (post-transcriptional and translational level), and the protein level (post-translational) are presented. The regulatory mechanisms and design modification strategies of each tool are highlighted. Subsequently, strategies for applying regulatory tools to construct dynamic regulatory networks of metabolic pathways are summarized. Finally, the limitations of current dynamic regulatory tools are discussed and future trends are outlooked.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"2418-2432\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.5c00219\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00219","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Microbial Dynamic Regulatory Tools: Design, Applications, and Prospects.
Establishing efficient microbial cell factories for the production of functional nutraceuticals, pharmaceuticals, biofuels, and chemical products requires precise regulation to adapt key enzymes and pathway modules. Dynamic regulatory strategies are a promising and effective approach to achieve balanced cell growth and metabolite production. Dynamic regulatory tools, as the executors of regulatory strategies, usually require rationally designed modification strategies to provide libraries of tools with reliable quality. Here, typical dynamic regulatory tools at the DNA level (transcriptional level), the RNA level (post-transcriptional and translational level), and the protein level (post-translational) are presented. The regulatory mechanisms and design modification strategies of each tool are highlighted. Subsequently, strategies for applying regulatory tools to construct dynamic regulatory networks of metabolic pathways are summarized. Finally, the limitations of current dynamic regulatory tools are discussed and future trends are outlooked.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.