f(G)引力通过Barrow的全息连接和全息暗流体的广义版本

IF 1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Surajit Chattopadhyay
{"title":"f(G)引力通过Barrow的全息连接和全息暗流体的广义版本","authors":"Surajit Chattopadhyay","doi":"10.1002/asna.20240149","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the study presented in this work, we use the holographic principle taking into account the Barrow entropy rather than the conventional Bekenstein–Hawking one to develop a holographic model for dark energy in the <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ f(G) $$</annotation>\n </semantics></math> gravity. The former results from the attempt to include quantum gravitational effects into the cosmological framework and, in accordance with the gravity–thermodynamic conjecture, into black hole physics. To investigate the cosmological implications of our model for <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ f(G) $$</annotation>\n </semantics></math> modified gravity, we discuss the cosmic implementation of the most generalized type of holographic dark energy, called Nojiri-Odintsov holographic dark energy (NO-HDE), and a particular example of it, called Barrow holographic dark energy. This is accomplished by adding to the <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ f(G) $$</annotation>\n </semantics></math> model a well-known power law form of the scale factor <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ a(t) $$</annotation>\n </semantics></math> and the Holographic dark energy. It is found that the reconstructed <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$$ f(G) $$</annotation>\n </semantics></math> satisfies a necessary condition for a realistic modified gravity model. Additionally, the reconstruction models are examined in the four energy scenarios. Lastly, the relationship to observational boundaries is examined, and the reconstructed EoS parameter is verified to fall within the constraints determined in the literature by utilizing observational data sets from BAO, SNLS3, and <span></span><math>\n <semantics>\n <mrow>\n <mtext>Planck</mtext>\n <mo>+</mo>\n <mtext>WMAP</mtext>\n <mn>9</mn>\n <mo>+</mo>\n <mtext>Wiggle</mtext>\n <mi>Z</mi>\n </mrow>\n <annotation>$$ \\mathrm{Planck}+ WMAP9+\\mathrm{Wiggle}Z $$</annotation>\n </semantics></math>.</p>\n </div>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holographic Connection of f(G) Gravity Through Barrow and a Generalized Version of Holographic Dark Fluid\",\"authors\":\"Surajit Chattopadhyay\",\"doi\":\"10.1002/asna.20240149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the study presented in this work, we use the holographic principle taking into account the Barrow entropy rather than the conventional Bekenstein–Hawking one to develop a holographic model for dark energy in the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ f(G) $$</annotation>\\n </semantics></math> gravity. The former results from the attempt to include quantum gravitational effects into the cosmological framework and, in accordance with the gravity–thermodynamic conjecture, into black hole physics. To investigate the cosmological implications of our model for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ f(G) $$</annotation>\\n </semantics></math> modified gravity, we discuss the cosmic implementation of the most generalized type of holographic dark energy, called Nojiri-Odintsov holographic dark energy (NO-HDE), and a particular example of it, called Barrow holographic dark energy. This is accomplished by adding to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ f(G) $$</annotation>\\n </semantics></math> model a well-known power law form of the scale factor <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ a(t) $$</annotation>\\n </semantics></math> and the Holographic dark energy. It is found that the reconstructed <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$$ f(G) $$</annotation>\\n </semantics></math> satisfies a necessary condition for a realistic modified gravity model. Additionally, the reconstruction models are examined in the four energy scenarios. Lastly, the relationship to observational boundaries is examined, and the reconstructed EoS parameter is verified to fall within the constraints determined in the literature by utilizing observational data sets from BAO, SNLS3, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>Planck</mtext>\\n <mo>+</mo>\\n <mtext>WMAP</mtext>\\n <mn>9</mn>\\n <mo>+</mo>\\n <mtext>Wiggle</mtext>\\n <mi>Z</mi>\\n </mrow>\\n <annotation>$$ \\\\mathrm{Planck}+ WMAP9+\\\\mathrm{Wiggle}Z $$</annotation>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"346 5\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240149\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240149","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中提出的研究中,我们使用了考虑巴罗熵而不是传统的贝肯斯坦-霍金熵的全息原理来开发f (G) $$ f(G) $$重力下暗能量的全息模型。前者源于试图将量子引力效应纳入宇宙学框架,并根据引力-热力学猜想纳入黑洞物理学。为了研究f (G) $$ f(G) $$修正引力模型的宇宙学含义,我们讨论了最广义的全息暗能量类型的宇宙实现,称为nojri - odintsov全息暗能量(NO-HDE),以及它的一个特殊例子。叫做巴罗全息暗能量。这是通过在f (G) $$ f(G) $$模型中加入众所周知的比例因子a (t) $$ a(t) $$的幂律形式来实现的以及全息暗能量。发现重建的f (G) $$ f(G) $$满足一个真实修正重力模型的必要条件。此外,还对四种能源情景下的重建模型进行了检验。最后,利用BAO、SNLS3和Planck + WMAP 9 + Wiggle Z $$ \mathrm{Planck}+ WMAP9+\mathrm{Wiggle}Z $$的观测数据集验证了重建的EoS参数符合文献中确定的约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holographic Connection of f(G) Gravity Through Barrow and a Generalized Version of Holographic Dark Fluid

In the study presented in this work, we use the holographic principle taking into account the Barrow entropy rather than the conventional Bekenstein–Hawking one to develop a holographic model for dark energy in the f ( G ) $$ f(G) $$ gravity. The former results from the attempt to include quantum gravitational effects into the cosmological framework and, in accordance with the gravity–thermodynamic conjecture, into black hole physics. To investigate the cosmological implications of our model for f ( G ) $$ f(G) $$ modified gravity, we discuss the cosmic implementation of the most generalized type of holographic dark energy, called Nojiri-Odintsov holographic dark energy (NO-HDE), and a particular example of it, called Barrow holographic dark energy. This is accomplished by adding to the f ( G ) $$ f(G) $$ model a well-known power law form of the scale factor a ( t ) $$ a(t) $$ and the Holographic dark energy. It is found that the reconstructed f ( G ) $$ f(G) $$ satisfies a necessary condition for a realistic modified gravity model. Additionally, the reconstruction models are examined in the four energy scenarios. Lastly, the relationship to observational boundaries is examined, and the reconstructed EoS parameter is verified to fall within the constraints determined in the literature by utilizing observational data sets from BAO, SNLS3, and Planck + WMAP 9 + Wiggle Z $$ \mathrm{Planck}+ WMAP9+\mathrm{Wiggle}Z $$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信