{"title":"基于tanh激活Kolmogorov-Arnold网络(Tanh-KAN)的床上姿势分类优化","authors":"Weiwei Chen, Bing Zhou, Wai Yie Leong","doi":"10.1049/sil2/6740194","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In-bed posture classification plays a crucial role in health monitoring. However, existing research on classification involves a limited range of in-bed postures. Meanwhile, in classification tasks, Kolmogorov–Arnold networks (KANs), as an emerging neural network architecture, have research gaps in two areas: training strategies and architecture design. In our research, we propose Tanh-KAN, an efficient variant of KAN for in-bed posture classification. First, we validate that disabling the spline scaler not only preserves classification accuracy on the PoPu, Pmat, and SPN datasets, but also contributes to a reduction in model parameters and an increase in throughput. Second, we simplified the cubic <i>B</i>-spline basis functions in the original KAN using a Tanh-kernel. Compared to the original KAN, the accuracy remained stable, while the parameters were reduced by approximately 9% and the backpropagation and inference speeds increased by 42.3% and 53.9%, respectively. Experimental results further demonstrate that Tanh-KAN not only reduces model complexity and accelerates computation but also maintains high accuracy, achieving 99.6% on PoPu, 98.5% on Pmat, and 61.5% on SPN, matching the original KAN’s performance.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2025 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2/6740194","citationCount":"0","resultStr":"{\"title\":\"Optimizing In-Bed Posture Classification Using Tanh-Activated Kolmogorov–Arnold Networks (Tanh-KAN)\",\"authors\":\"Weiwei Chen, Bing Zhou, Wai Yie Leong\",\"doi\":\"10.1049/sil2/6740194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In-bed posture classification plays a crucial role in health monitoring. However, existing research on classification involves a limited range of in-bed postures. Meanwhile, in classification tasks, Kolmogorov–Arnold networks (KANs), as an emerging neural network architecture, have research gaps in two areas: training strategies and architecture design. In our research, we propose Tanh-KAN, an efficient variant of KAN for in-bed posture classification. First, we validate that disabling the spline scaler not only preserves classification accuracy on the PoPu, Pmat, and SPN datasets, but also contributes to a reduction in model parameters and an increase in throughput. Second, we simplified the cubic <i>B</i>-spline basis functions in the original KAN using a Tanh-kernel. Compared to the original KAN, the accuracy remained stable, while the parameters were reduced by approximately 9% and the backpropagation and inference speeds increased by 42.3% and 53.9%, respectively. Experimental results further demonstrate that Tanh-KAN not only reduces model complexity and accelerates computation but also maintains high accuracy, achieving 99.6% on PoPu, 98.5% on Pmat, and 61.5% on SPN, matching the original KAN’s performance.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2/6740194\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2/6740194\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2/6740194","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimizing In-Bed Posture Classification Using Tanh-Activated Kolmogorov–Arnold Networks (Tanh-KAN)
In-bed posture classification plays a crucial role in health monitoring. However, existing research on classification involves a limited range of in-bed postures. Meanwhile, in classification tasks, Kolmogorov–Arnold networks (KANs), as an emerging neural network architecture, have research gaps in two areas: training strategies and architecture design. In our research, we propose Tanh-KAN, an efficient variant of KAN for in-bed posture classification. First, we validate that disabling the spline scaler not only preserves classification accuracy on the PoPu, Pmat, and SPN datasets, but also contributes to a reduction in model parameters and an increase in throughput. Second, we simplified the cubic B-spline basis functions in the original KAN using a Tanh-kernel. Compared to the original KAN, the accuracy remained stable, while the parameters were reduced by approximately 9% and the backpropagation and inference speeds increased by 42.3% and 53.9%, respectively. Experimental results further demonstrate that Tanh-KAN not only reduces model complexity and accelerates computation but also maintains high accuracy, achieving 99.6% on PoPu, 98.5% on Pmat, and 61.5% on SPN, matching the original KAN’s performance.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf