{"title":"球和圆柱外部加权Hardy不等式的最佳常数","authors":"Stathis Filippas, Achilles Tertikas","doi":"10.1016/j.na.2025.113885","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the weighted Hardy inequality <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>≥</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mo>∀</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>For <span><math><mrow><mi>s</mi><mo>></mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≠</mo><mi>n</mi></mrow></math></span> we compute the best constant in the case where <span><math><mi>Ω</mi></math></span> is either the complement of a ball or the complement of a circular cylinder. Typically one is able to compute best constants if the domain is weakly mean convex. In our case the domains are not weakly mean convex. The best constant depends on the parameter <span><math><mi>s</mi></math></span> in a surprising way. For instance when <span><math><mrow><mi>n</mi><mo>></mo><mn>3</mn></mrow></math></span> then <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo><mspace></mspace><mspace></mspace><mtext>if</mtext><mspace></mspace><mspace></mspace><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo><</mo><mi>s</mi><mo><</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></mrow></math></span></span></span>whereas <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mfenced><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced><mo>,</mo><mspace></mspace><mspace></mspace><mtext>otherwise</mtext><mo>.</mo></mrow></math></span></span></span></div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113885"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best constants for weighted Hardy inequalities in the exterior of balls and circular cylinders\",\"authors\":\"Stathis Filippas, Achilles Tertikas\",\"doi\":\"10.1016/j.na.2025.113885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the weighted Hardy inequality <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>≥</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mo>∀</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>For <span><math><mrow><mi>s</mi><mo>></mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≠</mo><mi>n</mi></mrow></math></span> we compute the best constant in the case where <span><math><mi>Ω</mi></math></span> is either the complement of a ball or the complement of a circular cylinder. Typically one is able to compute best constants if the domain is weakly mean convex. In our case the domains are not weakly mean convex. The best constant depends on the parameter <span><math><mi>s</mi></math></span> in a surprising way. For instance when <span><math><mrow><mi>n</mi><mo>></mo><mn>3</mn></mrow></math></span> then <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo><mspace></mspace><mspace></mspace><mtext>if</mtext><mspace></mspace><mspace></mspace><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo><</mo><mi>s</mi><mo><</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></mrow></math></span></span></span>whereas <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mfenced><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced><mo>,</mo><mspace></mspace><mspace></mspace><mtext>otherwise</mtext><mo>.</mo></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113885\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001397\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001397","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Best constants for weighted Hardy inequalities in the exterior of balls and circular cylinders
We consider the weighted Hardy inequality For , , we compute the best constant in the case where is either the complement of a ball or the complement of a circular cylinder. Typically one is able to compute best constants if the domain is weakly mean convex. In our case the domains are not weakly mean convex. The best constant depends on the parameter in a surprising way. For instance when then whereas
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.