球和圆柱外部加权Hardy不等式的最佳常数

IF 1.3 2区 数学 Q1 MATHEMATICS
Stathis Filippas, Achilles Tertikas
{"title":"球和圆柱外部加权Hardy不等式的最佳常数","authors":"Stathis Filippas,&nbsp;Achilles Tertikas","doi":"10.1016/j.na.2025.113885","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the weighted Hardy inequality <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>≥</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mo>∀</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>For <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≠</mo><mi>n</mi></mrow></math></span> we compute the best constant in the case where <span><math><mi>Ω</mi></math></span> is either the complement of a ball or the complement of a circular cylinder. Typically one is able to compute best constants if the domain is weakly mean convex. In our case the domains are not weakly mean convex. The best constant depends on the parameter <span><math><mi>s</mi></math></span> in a surprising way. For instance when <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>3</mn></mrow></math></span> then <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo><mspace></mspace><mspace></mspace><mtext>if</mtext><mspace></mspace><mspace></mspace><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></mrow></math></span></span></span>whereas <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mfenced><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced><mo>,</mo><mspace></mspace><mspace></mspace><mtext>otherwise</mtext><mo>.</mo></mrow></math></span></span></span></div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113885"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best constants for weighted Hardy inequalities in the exterior of balls and circular cylinders\",\"authors\":\"Stathis Filippas,&nbsp;Achilles Tertikas\",\"doi\":\"10.1016/j.na.2025.113885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the weighted Hardy inequality <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>≥</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mfrac><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mo>∀</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>For <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≠</mo><mi>n</mi></mrow></math></span> we compute the best constant in the case where <span><math><mi>Ω</mi></math></span> is either the complement of a ball or the complement of a circular cylinder. Typically one is able to compute best constants if the domain is weakly mean convex. In our case the domains are not weakly mean convex. The best constant depends on the parameter <span><math><mi>s</mi></math></span> in a surprising way. For instance when <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>3</mn></mrow></math></span> then <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>s</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo><mspace></mspace><mspace></mspace><mtext>if</mtext><mspace></mspace><mspace></mspace><mfrac><mrow><mn>3</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>3</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>,</mo></mrow></math></span></span></span>whereas <span><span><span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><mo>min</mo><mfenced><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mi>s</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced><mo>,</mo><mspace></mspace><mspace></mspace><mtext>otherwise</mtext><mo>.</mo></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113885\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001397\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001397","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑加权哈代不平等∫Ω|∇u (x) | 2 ds−2 (x) dx≥cs(Ω)∫Ωu2 (x) ds (x) dx,∀u∈Cc∞(Ω)。对于s>;1, n≥2,s≠n,我们计算Ω为球的补数或圆柱的补数时的最佳常数。通常,如果定义域是弱平均凸,则可以计算出最佳常数。在我们的例子中,这些区域不是弱平均凸。最佳常数以一种令人惊讶的方式依赖于参数s。例如当n> 3然后cs(Ω)= (n−2)(n−−1)(s−2)(n−3)2,if3n−5 n−1 & lt; s< n2−3 n + 4 n−1,而cs(Ω)= 122分钟−,n−s22,否则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Best constants for weighted Hardy inequalities in the exterior of balls and circular cylinders
We consider the weighted Hardy inequality Ω|u(x)|2ds2(x)dxcs(Ω)Ωu2(x)ds(x)dx,uCc(Ω).For s>1, n2, sn we compute the best constant in the case where Ω is either the complement of a ball or the complement of a circular cylinder. Typically one is able to compute best constants if the domain is weakly mean convex. In our case the domains are not weakly mean convex. The best constant depends on the parameter s in a surprising way. For instance when n>3 then cs(Ω)=(n2)(ns1)(s2)(n3)2,if3n5n1<s<n23n+4n1,whereas cs(Ω)=mins122,ns22,otherwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信