Riccardo De Luca , Maurizio Furno Palumbo , Paolo Frosi , Gabriele De Sano , Matteo Iafrati , Gian Mario Polli , Bruno Riccardi , Selanna Roccella
{"title":"托卡马克导流器试验装置首壁内限位器设计的热结构评价","authors":"Riccardo De Luca , Maurizio Furno Palumbo , Paolo Frosi , Gabriele De Sano , Matteo Iafrati , Gian Mario Polli , Bruno Riccardi , Selanna Roccella","doi":"10.1016/j.fusengdes.2025.115281","DOIUrl":null,"url":null,"abstract":"<div><div>The Divertor Tokamak Test facility (DTT) aims at investigating integrated power exhaust solutions that can be relevant for DEMO and future power plants. Such an ambitious goal imposes several constraints on the engineering design of the actively cooled plasma-facing components (PFCs) of DTT. For instance, the First Wall (FW) must withstand thermal and electromagnetic loads that arise during both normal and off-normal operations of various plasma scenarios. In particular, the Limiter Inboard FW (LIFW), covering 50 % of the IFW, has been designed to cope with plasma limited configurations, i.e. when the plasma interacts with the solid wall. Each module consists of seven long (2.3 m) coaxial pipes made of CuCrZr alloy. Owing to the high heat loads expected, the LIFW PFCs are based on the ITER-like W-monoblock design and the plasma-facing surface, protruding radially towards the plasma with respect to the standard IFW, has a toroidal shaping that helps distribute evenly the heat load. In the present work, the technological limits of the proposed LIFW design are assessed. Based on the hydraulic conditions of the cooling water, the maximum power that can be handled by the LIFW system is evaluated under the assumption of a safety margin from the critical heat flux (CHF). Moreover, the thermo-structural behavior of a LIFW unit is simulated in ANSYS under realistic boundary conditions. In this context, a parametric distribution of the thermal load is modelled as a function of the input power and the expected spatial-temporal evolution of the plasma “footprint”. Moreover, realistic kinematic boundary conditions, representative of the pinned supports, have been included in the structural integrity assessment of the pipe, carried out according to the ITER SDC-IC design criteria (design-by-analysis approach). Preliminary results suggest that the maximum peak heat flux that can be handled by the LIFW design falls in the range 5–8 MW/m<sup>2</sup>. This range is compatible with the DTT “Day0” scenario, when, due to the lesser knowledge of machine control, the most critical limiter operations may occur. Nonetheless, studies on the full power scenarios confirmed that in the ramp-up phase the maximum conductive heat load shall be lower than 1 MW/m<sup>2</sup> therefore the calculated performances can be considered adequately safe. After the fabrication of small-scale mock-ups, the lifetime of such components will be assessed experimentally, by means of cyclic thermal fatigue high heat flux tests.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"219 ","pages":"Article 115281"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-structural assessment of the limiter inboard first wall design of the Divertor Tokamak Test facility\",\"authors\":\"Riccardo De Luca , Maurizio Furno Palumbo , Paolo Frosi , Gabriele De Sano , Matteo Iafrati , Gian Mario Polli , Bruno Riccardi , Selanna Roccella\",\"doi\":\"10.1016/j.fusengdes.2025.115281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Divertor Tokamak Test facility (DTT) aims at investigating integrated power exhaust solutions that can be relevant for DEMO and future power plants. Such an ambitious goal imposes several constraints on the engineering design of the actively cooled plasma-facing components (PFCs) of DTT. For instance, the First Wall (FW) must withstand thermal and electromagnetic loads that arise during both normal and off-normal operations of various plasma scenarios. In particular, the Limiter Inboard FW (LIFW), covering 50 % of the IFW, has been designed to cope with plasma limited configurations, i.e. when the plasma interacts with the solid wall. Each module consists of seven long (2.3 m) coaxial pipes made of CuCrZr alloy. Owing to the high heat loads expected, the LIFW PFCs are based on the ITER-like W-monoblock design and the plasma-facing surface, protruding radially towards the plasma with respect to the standard IFW, has a toroidal shaping that helps distribute evenly the heat load. In the present work, the technological limits of the proposed LIFW design are assessed. Based on the hydraulic conditions of the cooling water, the maximum power that can be handled by the LIFW system is evaluated under the assumption of a safety margin from the critical heat flux (CHF). Moreover, the thermo-structural behavior of a LIFW unit is simulated in ANSYS under realistic boundary conditions. In this context, a parametric distribution of the thermal load is modelled as a function of the input power and the expected spatial-temporal evolution of the plasma “footprint”. Moreover, realistic kinematic boundary conditions, representative of the pinned supports, have been included in the structural integrity assessment of the pipe, carried out according to the ITER SDC-IC design criteria (design-by-analysis approach). Preliminary results suggest that the maximum peak heat flux that can be handled by the LIFW design falls in the range 5–8 MW/m<sup>2</sup>. This range is compatible with the DTT “Day0” scenario, when, due to the lesser knowledge of machine control, the most critical limiter operations may occur. Nonetheless, studies on the full power scenarios confirmed that in the ramp-up phase the maximum conductive heat load shall be lower than 1 MW/m<sup>2</sup> therefore the calculated performances can be considered adequately safe. After the fabrication of small-scale mock-ups, the lifetime of such components will be assessed experimentally, by means of cyclic thermal fatigue high heat flux tests.</div></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"219 \",\"pages\":\"Article 115281\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379625004776\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379625004776","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Thermo-structural assessment of the limiter inboard first wall design of the Divertor Tokamak Test facility
The Divertor Tokamak Test facility (DTT) aims at investigating integrated power exhaust solutions that can be relevant for DEMO and future power plants. Such an ambitious goal imposes several constraints on the engineering design of the actively cooled plasma-facing components (PFCs) of DTT. For instance, the First Wall (FW) must withstand thermal and electromagnetic loads that arise during both normal and off-normal operations of various plasma scenarios. In particular, the Limiter Inboard FW (LIFW), covering 50 % of the IFW, has been designed to cope with plasma limited configurations, i.e. when the plasma interacts with the solid wall. Each module consists of seven long (2.3 m) coaxial pipes made of CuCrZr alloy. Owing to the high heat loads expected, the LIFW PFCs are based on the ITER-like W-monoblock design and the plasma-facing surface, protruding radially towards the plasma with respect to the standard IFW, has a toroidal shaping that helps distribute evenly the heat load. In the present work, the technological limits of the proposed LIFW design are assessed. Based on the hydraulic conditions of the cooling water, the maximum power that can be handled by the LIFW system is evaluated under the assumption of a safety margin from the critical heat flux (CHF). Moreover, the thermo-structural behavior of a LIFW unit is simulated in ANSYS under realistic boundary conditions. In this context, a parametric distribution of the thermal load is modelled as a function of the input power and the expected spatial-temporal evolution of the plasma “footprint”. Moreover, realistic kinematic boundary conditions, representative of the pinned supports, have been included in the structural integrity assessment of the pipe, carried out according to the ITER SDC-IC design criteria (design-by-analysis approach). Preliminary results suggest that the maximum peak heat flux that can be handled by the LIFW design falls in the range 5–8 MW/m2. This range is compatible with the DTT “Day0” scenario, when, due to the lesser knowledge of machine control, the most critical limiter operations may occur. Nonetheless, studies on the full power scenarios confirmed that in the ramp-up phase the maximum conductive heat load shall be lower than 1 MW/m2 therefore the calculated performances can be considered adequately safe. After the fabrication of small-scale mock-ups, the lifetime of such components will be assessed experimentally, by means of cyclic thermal fatigue high heat flux tests.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.