非线性系统的大数据驱动预测控制——基于轨迹聚类的收缩方法

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Shuangyu Han , Yitao Yan , Jie Bao , Biao Huang
{"title":"非线性系统的大数据驱动预测控制——基于轨迹聚类的收缩方法","authors":"Shuangyu Han ,&nbsp;Yitao Yan ,&nbsp;Jie Bao ,&nbsp;Biao Huang","doi":"10.1016/j.jprocont.2025.103474","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a novel contraction-based big data-driven predictive control (CBDPC) approach for nonlinear systems using the behavioural systems framework. The nonlinear behavioural space is partitioned into linear sub-behavioural spaces, represented by connected trajectory clusters. The controller drives the process to travel through multiple linear sub-behavioural spaces to reach the setpoint. By introducing the concepts of data-based contraction and differential dissipativity, a trajectory cluster-based control contraction metric and contraction condition are developed to guarantee incremental exponential stability of the controlled nonlinear system behaviour and attenuate the effect of linear sub-behaviour approximation errors on controlled output. Connected trajectory clusters are obtained via multi-view fuzzy clustering, which partitions nonlinear system behaviour (i.e., a set of input–output data trajectories) into connected linear sub-behaviours (i.e., trajectory subsets with intersections). Based on the above contraction and dissipativity conditions, an online data-driven predictive control approach using Hankel matrices is developed. The proposed approach is illustrated using a case study on control of an aluminium smelting process, which demonstrates the control performance achieved by the CBDPC approach.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"152 ","pages":"Article 103474"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big data-driven predictive control for nonlinear systems—A trajectory cluster-based contraction approach\",\"authors\":\"Shuangyu Han ,&nbsp;Yitao Yan ,&nbsp;Jie Bao ,&nbsp;Biao Huang\",\"doi\":\"10.1016/j.jprocont.2025.103474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents a novel contraction-based big data-driven predictive control (CBDPC) approach for nonlinear systems using the behavioural systems framework. The nonlinear behavioural space is partitioned into linear sub-behavioural spaces, represented by connected trajectory clusters. The controller drives the process to travel through multiple linear sub-behavioural spaces to reach the setpoint. By introducing the concepts of data-based contraction and differential dissipativity, a trajectory cluster-based control contraction metric and contraction condition are developed to guarantee incremental exponential stability of the controlled nonlinear system behaviour and attenuate the effect of linear sub-behaviour approximation errors on controlled output. Connected trajectory clusters are obtained via multi-view fuzzy clustering, which partitions nonlinear system behaviour (i.e., a set of input–output data trajectories) into connected linear sub-behaviours (i.e., trajectory subsets with intersections). Based on the above contraction and dissipativity conditions, an online data-driven predictive control approach using Hankel matrices is developed. The proposed approach is illustrated using a case study on control of an aluminium smelting process, which demonstrates the control performance achieved by the CBDPC approach.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"152 \",\"pages\":\"Article 103474\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152425001027\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425001027","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于行为系统框架的基于收缩的非线性系统大数据驱动预测控制(CBDPC)方法。将非线性行为空间划分为线性子行为空间,用连通轨迹聚类表示。控制器驱动过程穿越多个线性子行为空间以达到设定值。通过引入基于数据的收缩和微分耗散的概念,提出了一种基于轨迹簇的控制收缩度量和收缩条件,以保证被控非线性系统行为的增量指数稳定性,并减弱线性子行为近似误差对被控输出的影响。通过多视图模糊聚类,将非线性系统行为(即一组输入-输出数据轨迹)划分为连通的线性子行为(即有交集的轨迹子集),得到连通的轨迹聚类。基于上述收缩和耗散条件,提出了一种基于Hankel矩阵的在线数据驱动预测控制方法。以某铝冶炼过程控制为例,验证了CBDPC方法的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data-driven predictive control for nonlinear systems—A trajectory cluster-based contraction approach
This article presents a novel contraction-based big data-driven predictive control (CBDPC) approach for nonlinear systems using the behavioural systems framework. The nonlinear behavioural space is partitioned into linear sub-behavioural spaces, represented by connected trajectory clusters. The controller drives the process to travel through multiple linear sub-behavioural spaces to reach the setpoint. By introducing the concepts of data-based contraction and differential dissipativity, a trajectory cluster-based control contraction metric and contraction condition are developed to guarantee incremental exponential stability of the controlled nonlinear system behaviour and attenuate the effect of linear sub-behaviour approximation errors on controlled output. Connected trajectory clusters are obtained via multi-view fuzzy clustering, which partitions nonlinear system behaviour (i.e., a set of input–output data trajectories) into connected linear sub-behaviours (i.e., trajectory subsets with intersections). Based on the above contraction and dissipativity conditions, an online data-driven predictive control approach using Hankel matrices is developed. The proposed approach is illustrated using a case study on control of an aluminium smelting process, which demonstrates the control performance achieved by the CBDPC approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信