Gang Wang , Cheng Zhang , Sichao Liu , Yongxuan Zhao , Yingfeng Zhang , Lihui Wang
{"title":"数字孪生驱动的多机器人协同制造:进展、挑战和未来方向","authors":"Gang Wang , Cheng Zhang , Sichao Liu , Yongxuan Zhao , Yingfeng Zhang , Lihui Wang","doi":"10.1016/j.jmsy.2025.06.014","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-robot systems envisioned for future factories will promote advancements and capabilities of handling complex tasks and realising optimal robotic operations. However, existing multi-robot systems face challenges such as integration complexity, difficult coordination and control, low scalability, and flexibility, and thus are far from realising adaptive and efficient multi-robot collaborative manufacturing (MRCM). Digital twin technology improves visualisation, consistency, and spatial–temporal collaboration in MRCM through real-time interaction and iterative optimisation in physical and virtual spaces. Despite these improvements, barriers such as undeveloped modelling capabilities, indeterminate collaborative strategies, and limited applicability impede widespread integration of MRCM. In response to these needs, this study provides a comprehensive review of the foundational concepts, systematic architecture, and enabling technologies of digital twin-driven MRCM, serving as a prospective vision for future work in collaborative intelligent manufacturing. With the development of sensors and computational capabilities, robot intelligence is evolving towards multi-robot collaboration, including perceptual, cognitive, and behavioural collaboration. Digital twins play a critical supporting role in multi-robot collaboration, and the architecture, methodologies, and applications are elaborated across diverse stages of MRCM processes. This paper also identifies current challenges and future research directions. It encourages academic and industrial stakeholders to integrate state-of-the-art AI technologies more thoroughly into multi-robot digital twin systems for enhanced efficiency and reliability in production.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"82 ","pages":"Pages 333-361"},"PeriodicalIF":14.2000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-robot collaborative manufacturing driven by digital twins: Advancements, challenges, and future directions\",\"authors\":\"Gang Wang , Cheng Zhang , Sichao Liu , Yongxuan Zhao , Yingfeng Zhang , Lihui Wang\",\"doi\":\"10.1016/j.jmsy.2025.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-robot systems envisioned for future factories will promote advancements and capabilities of handling complex tasks and realising optimal robotic operations. However, existing multi-robot systems face challenges such as integration complexity, difficult coordination and control, low scalability, and flexibility, and thus are far from realising adaptive and efficient multi-robot collaborative manufacturing (MRCM). Digital twin technology improves visualisation, consistency, and spatial–temporal collaboration in MRCM through real-time interaction and iterative optimisation in physical and virtual spaces. Despite these improvements, barriers such as undeveloped modelling capabilities, indeterminate collaborative strategies, and limited applicability impede widespread integration of MRCM. In response to these needs, this study provides a comprehensive review of the foundational concepts, systematic architecture, and enabling technologies of digital twin-driven MRCM, serving as a prospective vision for future work in collaborative intelligent manufacturing. With the development of sensors and computational capabilities, robot intelligence is evolving towards multi-robot collaboration, including perceptual, cognitive, and behavioural collaboration. Digital twins play a critical supporting role in multi-robot collaboration, and the architecture, methodologies, and applications are elaborated across diverse stages of MRCM processes. This paper also identifies current challenges and future research directions. It encourages academic and industrial stakeholders to integrate state-of-the-art AI technologies more thoroughly into multi-robot digital twin systems for enhanced efficiency and reliability in production.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"82 \",\"pages\":\"Pages 333-361\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612525001657\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525001657","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Multi-robot collaborative manufacturing driven by digital twins: Advancements, challenges, and future directions
Multi-robot systems envisioned for future factories will promote advancements and capabilities of handling complex tasks and realising optimal robotic operations. However, existing multi-robot systems face challenges such as integration complexity, difficult coordination and control, low scalability, and flexibility, and thus are far from realising adaptive and efficient multi-robot collaborative manufacturing (MRCM). Digital twin technology improves visualisation, consistency, and spatial–temporal collaboration in MRCM through real-time interaction and iterative optimisation in physical and virtual spaces. Despite these improvements, barriers such as undeveloped modelling capabilities, indeterminate collaborative strategies, and limited applicability impede widespread integration of MRCM. In response to these needs, this study provides a comprehensive review of the foundational concepts, systematic architecture, and enabling technologies of digital twin-driven MRCM, serving as a prospective vision for future work in collaborative intelligent manufacturing. With the development of sensors and computational capabilities, robot intelligence is evolving towards multi-robot collaboration, including perceptual, cognitive, and behavioural collaboration. Digital twins play a critical supporting role in multi-robot collaboration, and the architecture, methodologies, and applications are elaborated across diverse stages of MRCM processes. This paper also identifies current challenges and future research directions. It encourages academic and industrial stakeholders to integrate state-of-the-art AI technologies more thoroughly into multi-robot digital twin systems for enhanced efficiency and reliability in production.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.