非破坏性鳄梨成熟度分类的优化集成学习

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Panudech Tipauksorn , Prasert Luekhong , Minoru Okada , Jutturit Thongpron , Chokemongkol Nadee , Krisda Yingkayun
{"title":"非破坏性鳄梨成熟度分类的优化集成学习","authors":"Panudech Tipauksorn ,&nbsp;Prasert Luekhong ,&nbsp;Minoru Okada ,&nbsp;Jutturit Thongpron ,&nbsp;Chokemongkol Nadee ,&nbsp;Krisda Yingkayun","doi":"10.1016/j.atech.2025.101114","DOIUrl":null,"url":null,"abstract":"<div><div>Classifying avocado ripeness accurately is crucial for enhancing post-harvest management and minimizing waste in agricultural supply chains. This study focuses on creating a strong ensemble classification model using spectral data from 120 kilogrammes of Buccaneer avocados obtained from the Royal Project in Chiang Mai, Thailand. We analyzed the avocados with near-infrared (NIR) spectroscopy at 18 wavelengths. Five machine learning models Random Forest, Decision Tree, XGBoost, Gradient Boosting, and Gaussian Mixture Model were trained separately and then merged into an ensemble. Four algorithms were used to optimize the model weight distribution: Bayesian Optimisation, Differential Evolution, Particle Swarm Optimisation, and Grid Search. We assessed performance through accuracy, precision, recall, F1-score, confusion matrices, and ROC curves. Grid Search achieved the best classification performance, reaching an accuracy of 82.5% and an F1-score of 85.3%, highlighting the benefits of weight-optimized ensemble learning compared to single classifiers. This study offers a scalable and clear method for non-destructive ripeness detection. The findings, despite some limitations like overfitting and reliance on spectral data quality, support future real-time deployment in agriculture.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101114"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized ensemble learning for non-destructive avocado ripeness classification\",\"authors\":\"Panudech Tipauksorn ,&nbsp;Prasert Luekhong ,&nbsp;Minoru Okada ,&nbsp;Jutturit Thongpron ,&nbsp;Chokemongkol Nadee ,&nbsp;Krisda Yingkayun\",\"doi\":\"10.1016/j.atech.2025.101114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Classifying avocado ripeness accurately is crucial for enhancing post-harvest management and minimizing waste in agricultural supply chains. This study focuses on creating a strong ensemble classification model using spectral data from 120 kilogrammes of Buccaneer avocados obtained from the Royal Project in Chiang Mai, Thailand. We analyzed the avocados with near-infrared (NIR) spectroscopy at 18 wavelengths. Five machine learning models Random Forest, Decision Tree, XGBoost, Gradient Boosting, and Gaussian Mixture Model were trained separately and then merged into an ensemble. Four algorithms were used to optimize the model weight distribution: Bayesian Optimisation, Differential Evolution, Particle Swarm Optimisation, and Grid Search. We assessed performance through accuracy, precision, recall, F1-score, confusion matrices, and ROC curves. Grid Search achieved the best classification performance, reaching an accuracy of 82.5% and an F1-score of 85.3%, highlighting the benefits of weight-optimized ensemble learning compared to single classifiers. This study offers a scalable and clear method for non-destructive ripeness detection. The findings, despite some limitations like overfitting and reliance on spectral data quality, support future real-time deployment in agriculture.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":\"12 \",\"pages\":\"Article 101114\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375525003478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

准确分类鳄梨成熟度对于加强收获后管理和减少农业供应链中的浪费至关重要。这项研究的重点是利用从泰国清迈皇家项目获得的120公斤Buccaneer鳄梨的光谱数据创建一个强大的集合分类模型。我们用近红外光谱(NIR)对牛油果进行了18个波长的分析。分别训练随机森林、决策树、XGBoost、梯度增强和高斯混合模型五个机器学习模型,然后合并成一个集合。采用贝叶斯优化、差分进化、粒子群优化和网格搜索四种算法对模型权重分布进行优化。我们通过准确度、精密度、召回率、f1评分、混淆矩阵和ROC曲线来评估性能。网格搜索获得了最好的分类性能,准确率达到82.5%,f1得分为85.3%,突出了权重优化的集成学习与单一分类器相比的优势。本研究提供了一种可扩展的、清晰的无损成熟度检测方法。尽管存在一些局限性,如过度拟合和对光谱数据质量的依赖,但这些发现支持未来农业的实时部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized ensemble learning for non-destructive avocado ripeness classification
Classifying avocado ripeness accurately is crucial for enhancing post-harvest management and minimizing waste in agricultural supply chains. This study focuses on creating a strong ensemble classification model using spectral data from 120 kilogrammes of Buccaneer avocados obtained from the Royal Project in Chiang Mai, Thailand. We analyzed the avocados with near-infrared (NIR) spectroscopy at 18 wavelengths. Five machine learning models Random Forest, Decision Tree, XGBoost, Gradient Boosting, and Gaussian Mixture Model were trained separately and then merged into an ensemble. Four algorithms were used to optimize the model weight distribution: Bayesian Optimisation, Differential Evolution, Particle Swarm Optimisation, and Grid Search. We assessed performance through accuracy, precision, recall, F1-score, confusion matrices, and ROC curves. Grid Search achieved the best classification performance, reaching an accuracy of 82.5% and an F1-score of 85.3%, highlighting the benefits of weight-optimized ensemble learning compared to single classifiers. This study offers a scalable and clear method for non-destructive ripeness detection. The findings, despite some limitations like overfitting and reliance on spectral data quality, support future real-time deployment in agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信