{"title":"波浪对浮动、柔性和多孔板的3D效果","authors":"Karl H. McGuire, Håvar R.L. Jacobsen, John Grue","doi":"10.1016/j.jfluidstructs.2025.104361","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by floating solar energy production, we derive by a variational approach the equation of motion of a floating, flexible, and porous plate exposed to incoming waves. The modal representation is orthogonal and complete. The wavenumber <span><math><mi>K</mi></math></span> is up to <span><math><mrow><mi>K</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>≤</mo><mn>30</mn></mrow></math></span> (<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> the plate length). The dimensionless stiffness <span><math><mrow><mi>D</mi><mo>/</mo><mrow><mo>(</mo><mi>ρ</mi><mi>g</mi><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span> is in the range between <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> (small plate) and <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> (large plate) (<span><math><mi>ρ</mi></math></span> the density of the fluid, <span><math><mi>g</mi></math></span> the acceleration due to gravity, <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> the lateral plate extension). The damping effect of the plate is modeled by a linear Darcy law. Even a small damping coefficient strongly reduces the plate responses. The porous dissipation depends on the flexibility of the plate. The plate-fluid system is connected with a set of integral equations for the radiation and diffraction problems using suitable Green functions in 3D and 2D. The integral equations are developed in two different versions. A set of generalized Haskind relations for the modal exciting force is developed. The damping coefficients are predicted by three different theoretical formulas obtaining convergent results. The overall energy equation is evaluated. The horizontal drift force on a damped plate is essential.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"137 ","pages":"Article 104361"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave effects on a floating, flexible and porous plate in 3D\",\"authors\":\"Karl H. McGuire, Håvar R.L. Jacobsen, John Grue\",\"doi\":\"10.1016/j.jfluidstructs.2025.104361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by floating solar energy production, we derive by a variational approach the equation of motion of a floating, flexible, and porous plate exposed to incoming waves. The modal representation is orthogonal and complete. The wavenumber <span><math><mi>K</mi></math></span> is up to <span><math><mrow><mi>K</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>≤</mo><mn>30</mn></mrow></math></span> (<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> the plate length). The dimensionless stiffness <span><math><mrow><mi>D</mi><mo>/</mo><mrow><mo>(</mo><mi>ρ</mi><mi>g</mi><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span> is in the range between <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> (small plate) and <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> (large plate) (<span><math><mi>ρ</mi></math></span> the density of the fluid, <span><math><mi>g</mi></math></span> the acceleration due to gravity, <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>y</mi></mrow></msub></math></span> the lateral plate extension). The damping effect of the plate is modeled by a linear Darcy law. Even a small damping coefficient strongly reduces the plate responses. The porous dissipation depends on the flexibility of the plate. The plate-fluid system is connected with a set of integral equations for the radiation and diffraction problems using suitable Green functions in 3D and 2D. The integral equations are developed in two different versions. A set of generalized Haskind relations for the modal exciting force is developed. The damping coefficients are predicted by three different theoretical formulas obtaining convergent results. The overall energy equation is evaluated. The horizontal drift force on a damped plate is essential.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"137 \",\"pages\":\"Article 104361\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974625000969\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974625000969","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
受浮动太阳能生产的启发,我们通过变分方法推导了暴露在入射波中的浮动、柔性和多孔板的运动方程。模态表示是正交的、完备的。波数K达到K, x≤30 (x板长)。无量纲刚度D/(ρg r x2 r y2)在10−3(小板)和10−7(大板)之间(ρ为流体密度,g为重力加速度,y为侧板延伸)。板的阻尼效应用线性达西定律来模拟。即使很小的阻尼系数也会大大降低板的响应。多孔耗散取决于板的柔韧性。利用合适的三维和二维格林函数将板-流体系统与辐射和衍射问题的一组积分方程联系起来。积分方程有两种不同的形式。给出了模态激振力的一组广义哈斯金关系。用三种不同的理论公式对阻尼系数进行了预测,得到了收敛的结果。计算了总能量方程。阻尼板上的水平漂移力是必不可少的。
Wave effects on a floating, flexible and porous plate in 3D
Motivated by floating solar energy production, we derive by a variational approach the equation of motion of a floating, flexible, and porous plate exposed to incoming waves. The modal representation is orthogonal and complete. The wavenumber is up to ( the plate length). The dimensionless stiffness is in the range between (small plate) and (large plate) ( the density of the fluid, the acceleration due to gravity, the lateral plate extension). The damping effect of the plate is modeled by a linear Darcy law. Even a small damping coefficient strongly reduces the plate responses. The porous dissipation depends on the flexibility of the plate. The plate-fluid system is connected with a set of integral equations for the radiation and diffraction problems using suitable Green functions in 3D and 2D. The integral equations are developed in two different versions. A set of generalized Haskind relations for the modal exciting force is developed. The damping coefficients are predicted by three different theoretical formulas obtaining convergent results. The overall energy equation is evaluated. The horizontal drift force on a damped plate is essential.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.