Hannah Banks, Stephanie Beram, Rashaad Reid and Aaron C. Vincent
{"title":"不对称暗物质在现实恒星和行星中的热传导模拟","authors":"Hannah Banks, Stephanie Beram, Rashaad Reid and Aaron C. Vincent","doi":"10.1088/1475-7516/2025/06/047","DOIUrl":null,"url":null,"abstract":"Dark matter captured in stars can act as an additional heat transport mechanism, modifying fusion rates and asteroseismoloigcal observables. Calculations of heat transport rates rely on approximate solutions to the Boltzmann equation, which have never been verified in realistic stars. Here, we simulate heat transport in the Sun, the Earth, and a brown dwarf model, using realistic radial temperature, density, composition and gravitational potential profiles. We show that the formalism developed in ref. [1] remains accurate across all celestial objects considered, across a wide range of kinematic regimes, for both spin-dependent and spin-independent interactions where scattering with multiple species becomes important. We further investigate evaporation rates of dark matter from the Sun, finding that previous calculations appear robust. Our Monte Carlo simulation software cosmion is publicly available: https://github.com/aaronvincent/cosmion.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"17 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of thermal conduction by asymmetric dark matter in realistic stars and planets\",\"authors\":\"Hannah Banks, Stephanie Beram, Rashaad Reid and Aaron C. Vincent\",\"doi\":\"10.1088/1475-7516/2025/06/047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dark matter captured in stars can act as an additional heat transport mechanism, modifying fusion rates and asteroseismoloigcal observables. Calculations of heat transport rates rely on approximate solutions to the Boltzmann equation, which have never been verified in realistic stars. Here, we simulate heat transport in the Sun, the Earth, and a brown dwarf model, using realistic radial temperature, density, composition and gravitational potential profiles. We show that the formalism developed in ref. [1] remains accurate across all celestial objects considered, across a wide range of kinematic regimes, for both spin-dependent and spin-independent interactions where scattering with multiple species becomes important. We further investigate evaporation rates of dark matter from the Sun, finding that previous calculations appear robust. Our Monte Carlo simulation software cosmion is publicly available: https://github.com/aaronvincent/cosmion.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/06/047\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/06/047","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Simulation of thermal conduction by asymmetric dark matter in realistic stars and planets
Dark matter captured in stars can act as an additional heat transport mechanism, modifying fusion rates and asteroseismoloigcal observables. Calculations of heat transport rates rely on approximate solutions to the Boltzmann equation, which have never been verified in realistic stars. Here, we simulate heat transport in the Sun, the Earth, and a brown dwarf model, using realistic radial temperature, density, composition and gravitational potential profiles. We show that the formalism developed in ref. [1] remains accurate across all celestial objects considered, across a wide range of kinematic regimes, for both spin-dependent and spin-independent interactions where scattering with multiple species becomes important. We further investigate evaporation rates of dark matter from the Sun, finding that previous calculations appear robust. Our Monte Carlo simulation software cosmion is publicly available: https://github.com/aaronvincent/cosmion.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.