储氢材料KSrZH6 (Z = Rh, Ir)的稳定性、物理性质和分子动力学第一性原理研究

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Aya Chelh, Boutaina akenoun, Smahane Dahbi, Hamid Ez‐Zahraouy, E. A. Elghmaz, N.S. Abd EL‐Gawaad, Mohammed S. Abu‐Jafar, Asif Hosen
{"title":"储氢材料KSrZH6 (Z = Rh, Ir)的稳定性、物理性质和分子动力学第一性原理研究","authors":"Aya Chelh, Boutaina akenoun, Smahane Dahbi, Hamid Ez‐Zahraouy, E. A. Elghmaz, N.S. Abd EL‐Gawaad, Mohammed S. Abu‐Jafar, Asif Hosen","doi":"10.1002/adts.202500622","DOIUrl":null,"url":null,"abstract":"This study examines the structural, electronic, optical, elastic, thermodynamic, and hydrogen storage properties of KSrZH<jats:sub>6</jats:sub> (Z = Rh, Ir) utilizing density functional theory to explore their potential as hydrogen storage materials. The structural analysis confirms that all the studied materials crystallize in the cubic phase with space group 216 (). The phonon dispersion and ab initio molecular dynamics (AIMD) computations reveal dynamic and thermal stability for both compounds. In addition, the electronic structures exhibit indirect semiconducting properties, with an extensive hybridization near the Fermi level between 1s‐orbitals of hydrogen (H), and d‐orbitals of the transition metals (Rh and Ir). Furthermore, optical investigations reveal significant UV absorption, as well as a moderate refractive index and reflectivity, which can be useful in optoelectronic devices. All of the studied materials possess mechanical stability and show brittle properties. Among the compounds, KSrRhH<jats:sub>6</jats:sub> exhibits the highest gravimetric hydrogen storage capacity of 2.57 wt.%, while KSrIrH<jats:sub>6</jats:sub> shows a slightly lower value of 1.86 wt.%. The storage capacity decreases when the cationic atom Rh is substituted with Ir, attributed to variations in atomic radius. This comprehensive study underscores the promising potential of KSrZH<jats:sub>6</jats:sub> (Z = Rh, Ir) for both hydrogen storage and optoelectronic applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"17 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First‐Principles Study of the Stability, Physical Properties, and Molecular Dynamics in KSrZH6 (Z = Rh, Ir) for Hydrogen Storage Applications\",\"authors\":\"Aya Chelh, Boutaina akenoun, Smahane Dahbi, Hamid Ez‐Zahraouy, E. A. Elghmaz, N.S. Abd EL‐Gawaad, Mohammed S. Abu‐Jafar, Asif Hosen\",\"doi\":\"10.1002/adts.202500622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the structural, electronic, optical, elastic, thermodynamic, and hydrogen storage properties of KSrZH<jats:sub>6</jats:sub> (Z = Rh, Ir) utilizing density functional theory to explore their potential as hydrogen storage materials. The structural analysis confirms that all the studied materials crystallize in the cubic phase with space group 216 (). The phonon dispersion and ab initio molecular dynamics (AIMD) computations reveal dynamic and thermal stability for both compounds. In addition, the electronic structures exhibit indirect semiconducting properties, with an extensive hybridization near the Fermi level between 1s‐orbitals of hydrogen (H), and d‐orbitals of the transition metals (Rh and Ir). Furthermore, optical investigations reveal significant UV absorption, as well as a moderate refractive index and reflectivity, which can be useful in optoelectronic devices. All of the studied materials possess mechanical stability and show brittle properties. Among the compounds, KSrRhH<jats:sub>6</jats:sub> exhibits the highest gravimetric hydrogen storage capacity of 2.57 wt.%, while KSrIrH<jats:sub>6</jats:sub> shows a slightly lower value of 1.86 wt.%. The storage capacity decreases when the cationic atom Rh is substituted with Ir, attributed to variations in atomic radius. This comprehensive study underscores the promising potential of KSrZH<jats:sub>6</jats:sub> (Z = Rh, Ir) for both hydrogen storage and optoelectronic applications.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500622\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500622","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用密度泛函理论研究了KSrZH6 (Z = Rh, Ir)的结构、电子、光学、弹性、热力学和储氢性能,以探索其作为储氢材料的潜力。结构分析证实,所研究的材料均以空间群216()的立方相结晶。声子色散和从头算分子动力学(AIMD)计算揭示了这两种化合物的动力学和热稳定性。此外,电子结构表现出间接的半导体性质,氢(H)的1s轨道和过渡金属(Rh和Ir)的d轨道在费米能级附近有广泛的杂化。此外,光学研究揭示了显著的紫外吸收,以及适度的折射率和反射率,这在光电器件中是有用的。所研究的材料均具有机械稳定性和脆性。其中,ksrrh6的重量储氢量最高,为2.57 wt.%, KSrIrH6的重量储氢量略低,为1.86 wt.%。当阳离子原子Rh被Ir取代时,由于原子半径的变化,存储容量下降。这项综合研究强调了KSrZH6 (Z = Rh, Ir)在储氢和光电子应用方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First‐Principles Study of the Stability, Physical Properties, and Molecular Dynamics in KSrZH6 (Z = Rh, Ir) for Hydrogen Storage Applications
This study examines the structural, electronic, optical, elastic, thermodynamic, and hydrogen storage properties of KSrZH6 (Z = Rh, Ir) utilizing density functional theory to explore their potential as hydrogen storage materials. The structural analysis confirms that all the studied materials crystallize in the cubic phase with space group 216 (). The phonon dispersion and ab initio molecular dynamics (AIMD) computations reveal dynamic and thermal stability for both compounds. In addition, the electronic structures exhibit indirect semiconducting properties, with an extensive hybridization near the Fermi level between 1s‐orbitals of hydrogen (H), and d‐orbitals of the transition metals (Rh and Ir). Furthermore, optical investigations reveal significant UV absorption, as well as a moderate refractive index and reflectivity, which can be useful in optoelectronic devices. All of the studied materials possess mechanical stability and show brittle properties. Among the compounds, KSrRhH6 exhibits the highest gravimetric hydrogen storage capacity of 2.57 wt.%, while KSrIrH6 shows a slightly lower value of 1.86 wt.%. The storage capacity decreases when the cationic atom Rh is substituted with Ir, attributed to variations in atomic radius. This comprehensive study underscores the promising potential of KSrZH6 (Z = Rh, Ir) for both hydrogen storage and optoelectronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信