DeepPredict:一个最先进的蛋白质二级结构和相对溶剂可及性预测的web服务器。

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-06-06 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1607402
Wafa Alanazi, Di Meng, Gianluca Pollastri
{"title":"DeepPredict:一个最先进的蛋白质二级结构和相对溶剂可及性预测的web服务器。","authors":"Wafa Alanazi, Di Meng, Gianluca Pollastri","doi":"10.3389/fbinf.2025.1607402","DOIUrl":null,"url":null,"abstract":"<p><p>DeepPredict is a freely accessible web server that integrates Porter6 and PaleAle6, two state-of-the-art deep learning models designed for protein secondary structure prediction (PSSP) and relative solvent accessibility (RSA) prediction, respectively. Built on an advanced deep learning framework, DeepPredict leverages pre-trained protein language models (PLMs), specifically ESM-2, to eliminate the need for multiple sequence alignments (MSAs), enabling rapid and accurate predictions. Compared to existing methods, DeepPredict outperforms in both PSSP and RSA prediction tasks, delivering state-of-the-art performance. The server offers a user-friendly interface, catering to both computational biologists and experimental researchers. DeepPredict is available at [ https://pcrgwd.ucd.ie/wafa/] with comprehensive online documentation and downloadable example datasets.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1607402"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179536/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeepPredict: a state-of-the-art web server for protein secondary structure and relative solvent accessibility prediction.\",\"authors\":\"Wafa Alanazi, Di Meng, Gianluca Pollastri\",\"doi\":\"10.3389/fbinf.2025.1607402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DeepPredict is a freely accessible web server that integrates Porter6 and PaleAle6, two state-of-the-art deep learning models designed for protein secondary structure prediction (PSSP) and relative solvent accessibility (RSA) prediction, respectively. Built on an advanced deep learning framework, DeepPredict leverages pre-trained protein language models (PLMs), specifically ESM-2, to eliminate the need for multiple sequence alignments (MSAs), enabling rapid and accurate predictions. Compared to existing methods, DeepPredict outperforms in both PSSP and RSA prediction tasks, delivering state-of-the-art performance. The server offers a user-friendly interface, catering to both computational biologists and experimental researchers. DeepPredict is available at [ https://pcrgwd.ucd.ie/wafa/] with comprehensive online documentation and downloadable example datasets.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"5 \",\"pages\":\"1607402\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179536/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2025.1607402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1607402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

DeepPredict是一个免费访问的web服务器,它集成了portter6和PaleAle6,这两种最先进的深度学习模型分别用于蛋白质二级结构预测(PSSP)和相对溶剂可及性(RSA)预测。DeepPredict基于先进的深度学习框架,利用预先训练的蛋白质语言模型(PLMs),特别是ESM-2,消除了对多序列比对(msa)的需求,实现了快速准确的预测。与现有方法相比,DeepPredict在PSSP和RSA预测任务中都表现出色,提供了最先进的性能。该服务器提供了一个用户友好的界面,迎合计算生物学家和实验研究人员。DeepPredict可在[https://pcrgwd.ucd.ie/wafa/]]上获得全面的在线文档和可下载的示例数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DeepPredict: a state-of-the-art web server for protein secondary structure and relative solvent accessibility prediction.

DeepPredict: a state-of-the-art web server for protein secondary structure and relative solvent accessibility prediction.

DeepPredict: a state-of-the-art web server for protein secondary structure and relative solvent accessibility prediction.

DeepPredict is a freely accessible web server that integrates Porter6 and PaleAle6, two state-of-the-art deep learning models designed for protein secondary structure prediction (PSSP) and relative solvent accessibility (RSA) prediction, respectively. Built on an advanced deep learning framework, DeepPredict leverages pre-trained protein language models (PLMs), specifically ESM-2, to eliminate the need for multiple sequence alignments (MSAs), enabling rapid and accurate predictions. Compared to existing methods, DeepPredict outperforms in both PSSP and RSA prediction tasks, delivering state-of-the-art performance. The server offers a user-friendly interface, catering to both computational biologists and experimental researchers. DeepPredict is available at [ https://pcrgwd.ucd.ie/wafa/] with comprehensive online documentation and downloadable example datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信