动态试验中习得肌动蛋白结构(ATLAS)的自动跟踪。

IF 2.7 Q3 BIOPHYSICS
Biophysical reports Pub Date : 2025-09-10 Epub Date: 2025-06-21 DOI:10.1016/j.bpr.2025.100221
Sebastian Duno-Miranda, David M Warshaw, Shane R Nelson
{"title":"动态试验中习得肌动蛋白结构(ATLAS)的自动跟踪。","authors":"Sebastian Duno-Miranda, David M Warshaw, Shane R Nelson","doi":"10.1016/j.bpr.2025.100221","DOIUrl":null,"url":null,"abstract":"<p><p>The In Vitro Motility Assay (IVMA) is a widely used experimental system to study the chemical and mechanical activity of myosin and other cytoskeletal motor proteins. In the IVMA, myosin molecules are bound to a glass surface and propel fluorescently labeled actin filaments across the surface, which are recorded using video fluorescence microscopy. The length and velocity of the actin filaments offer a measurement of the chemomechanical activity of the myosin motor proteins. Although the assay itself is well suited for high-throughput application, current video analysis approaches are slow, labor intensive, and subject to human bias. To address this shortfall, we introduce ATLAS, an open-source, platform independent software package that utilizes state-of-the-art machine learning algorithms to identify fluorescently labeled actin filaments and then track and analyze their motion in the IVMA. Utilizing both experimental data and a large array of simulated actomyosin motility movies, we demonstrate that ATLAS accurately and efficiently measures both the velocity and length of actin filaments across a broad range of experimental conditions.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100221"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271436/pdf/","citationCount":"0","resultStr":"{\"title\":\"ATLAS: Machine learning-enhanced filament analysis for the In Vitro Motility Assay.\",\"authors\":\"Sebastian Duno-Miranda, David M Warshaw, Shane R Nelson\",\"doi\":\"10.1016/j.bpr.2025.100221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The In Vitro Motility Assay (IVMA) is a widely used experimental system to study the chemical and mechanical activity of myosin and other cytoskeletal motor proteins. In the IVMA, myosin molecules are bound to a glass surface and propel fluorescently labeled actin filaments across the surface, which are recorded using video fluorescence microscopy. The length and velocity of the actin filaments offer a measurement of the chemomechanical activity of the myosin motor proteins. Although the assay itself is well suited for high-throughput application, current video analysis approaches are slow, labor intensive, and subject to human bias. To address this shortfall, we introduce ATLAS, an open-source, platform independent software package that utilizes state-of-the-art machine learning algorithms to identify fluorescently labeled actin filaments and then track and analyze their motion in the IVMA. Utilizing both experimental data and a large array of simulated actomyosin motility movies, we demonstrate that ATLAS accurately and efficiently measures both the velocity and length of actin filaments across a broad range of experimental conditions.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\" \",\"pages\":\"100221\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2025.100221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2025.100221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

体外运动测定(IVMA)是一种广泛使用的实验系统,用于研究肌球蛋白和其他细胞骨架运动蛋白的化学和机械活性。在IVMA中,肌凝蛋白分子与玻璃表面结合,并推动荧光标记的肌动蛋白丝穿过表面,这是用视频荧光显微镜记录的。肌动蛋白丝的长度和速度提供了肌凝蛋白运动蛋白化学机械活性的测量。虽然分析本身非常适合高通量应用,但目前的视频分析方法速度慢,劳动密集型,并且容易受到人为偏见的影响。为了解决这一不足,我们引入了学习肌动蛋白结构的自动跟踪(ATLAS),这是一个开源的平台独立软件包,利用最先进的机器学习算法来识别荧光标记的肌动蛋白细丝,然后跟踪和分析它们在IVMA中的运动。利用实验数据和大量模拟肌动蛋白(SAMY)运动视频,我们证明了ATLAS在广泛的实验条件下准确有效地测量肌动蛋白丝的速度和长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATLAS: Machine learning-enhanced filament analysis for the In Vitro Motility Assay.

The In Vitro Motility Assay (IVMA) is a widely used experimental system to study the chemical and mechanical activity of myosin and other cytoskeletal motor proteins. In the IVMA, myosin molecules are bound to a glass surface and propel fluorescently labeled actin filaments across the surface, which are recorded using video fluorescence microscopy. The length and velocity of the actin filaments offer a measurement of the chemomechanical activity of the myosin motor proteins. Although the assay itself is well suited for high-throughput application, current video analysis approaches are slow, labor intensive, and subject to human bias. To address this shortfall, we introduce ATLAS, an open-source, platform independent software package that utilizes state-of-the-art machine learning algorithms to identify fluorescently labeled actin filaments and then track and analyze their motion in the IVMA. Utilizing both experimental data and a large array of simulated actomyosin motility movies, we demonstrate that ATLAS accurately and efficiently measures both the velocity and length of actin filaments across a broad range of experimental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信