用CT标记对升主动脉精细解剖的MRI体积进行心脏分割。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hirohisa Oda, Mayu Wakamori, Toshiaki Akita
{"title":"用CT标记对升主动脉精细解剖的MRI体积进行心脏分割。","authors":"Hirohisa Oda, Mayu Wakamori, Toshiaki Akita","doi":"10.1007/s12194-025-00926-x","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) is time-consuming, posing challenges in capturing clear images of moving organs, such as cardiac structures, including complex structures such as the Valsalva sinus. This study evaluates a computed tomography (CT)-guided refinement approach for cardiac segmentation from MRI volumes, focused on preserving the detailed shape of the Valsalva sinus. Owing to the low spatial contrast around the Valsalva sinus in MRI, labels from separate computed tomography (CT) volumes are used to refine the segmentation. Deep learning techniques are employed to obtain initial segmentation from MRI volumes, followed by the detection of the ascending aorta's proximal point. This detected proximal point is then used to select the most similar label from CT volumes of other patients. Non-rigid registration is further applied to refine the segmentation. Experiments conducted on 20 MRI volumes with labels from 20 CT volumes exhibited a slight decrease in quantitative segmentation accuracy. The CT-guided method demonstrated the precision (0.908), recall (0.746), and Dice score (0.804) for the ascending aorta compared with those obtained by nnU-Net alone (0.903, 0.770, and 0.816, respectively). Although some outputs showed bulge-like structures near the Valsalva sinus, an improvement in quantitative segmentation accuracy could not be validated.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining cardiac segmentation from MRI volumes with CT labels for fine anatomy of the ascending aorta.\",\"authors\":\"Hirohisa Oda, Mayu Wakamori, Toshiaki Akita\",\"doi\":\"10.1007/s12194-025-00926-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic resonance imaging (MRI) is time-consuming, posing challenges in capturing clear images of moving organs, such as cardiac structures, including complex structures such as the Valsalva sinus. This study evaluates a computed tomography (CT)-guided refinement approach for cardiac segmentation from MRI volumes, focused on preserving the detailed shape of the Valsalva sinus. Owing to the low spatial contrast around the Valsalva sinus in MRI, labels from separate computed tomography (CT) volumes are used to refine the segmentation. Deep learning techniques are employed to obtain initial segmentation from MRI volumes, followed by the detection of the ascending aorta's proximal point. This detected proximal point is then used to select the most similar label from CT volumes of other patients. Non-rigid registration is further applied to refine the segmentation. Experiments conducted on 20 MRI volumes with labels from 20 CT volumes exhibited a slight decrease in quantitative segmentation accuracy. The CT-guided method demonstrated the precision (0.908), recall (0.746), and Dice score (0.804) for the ascending aorta compared with those obtained by nnU-Net alone (0.903, 0.770, and 0.816, respectively). Although some outputs showed bulge-like structures near the Valsalva sinus, an improvement in quantitative segmentation accuracy could not be validated.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00926-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00926-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像(MRI)耗时,在捕捉运动器官(如心脏结构,包括复杂结构,如Valsalva窦)的清晰图像方面存在挑战。本研究评估了计算机断层扫描(CT)引导下从MRI体积中分割心脏的精细方法,重点是保留Valsalva窦的详细形状。由于MRI中Valsalva窦周围的空间对比度较低,因此使用来自单独计算机断层扫描(CT)体积的标签来细化分割。使用深度学习技术从MRI体积中获得初始分割,然后检测升主动脉的近端点。然后使用检测到的近端点从其他患者的CT体积中选择最相似的标签。采用非刚性配准进一步细化分割。使用来自20个CT体积的标签对20个MRI体积进行的实验显示,定量分割的准确性略有下降。ct引导下的方法对升主动脉的准确率(0.908)、召回率(0.746)和Dice评分(0.804)优于单独使用nnU-Net的方法(分别为0.903、0.770和0.816)。虽然一些输出在Valsalva窦附近显示凸起状结构,但无法验证定量分割精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refining cardiac segmentation from MRI volumes with CT labels for fine anatomy of the ascending aorta.

Magnetic resonance imaging (MRI) is time-consuming, posing challenges in capturing clear images of moving organs, such as cardiac structures, including complex structures such as the Valsalva sinus. This study evaluates a computed tomography (CT)-guided refinement approach for cardiac segmentation from MRI volumes, focused on preserving the detailed shape of the Valsalva sinus. Owing to the low spatial contrast around the Valsalva sinus in MRI, labels from separate computed tomography (CT) volumes are used to refine the segmentation. Deep learning techniques are employed to obtain initial segmentation from MRI volumes, followed by the detection of the ascending aorta's proximal point. This detected proximal point is then used to select the most similar label from CT volumes of other patients. Non-rigid registration is further applied to refine the segmentation. Experiments conducted on 20 MRI volumes with labels from 20 CT volumes exhibited a slight decrease in quantitative segmentation accuracy. The CT-guided method demonstrated the precision (0.908), recall (0.746), and Dice score (0.804) for the ascending aorta compared with those obtained by nnU-Net alone (0.903, 0.770, and 0.816, respectively). Although some outputs showed bulge-like structures near the Valsalva sinus, an improvement in quantitative segmentation accuracy could not be validated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信