v - atp酶ATP6V0D1亚基在神经母细胞瘤细胞化疗耐药和椭圆素诱导的细胞质空泡化中的作用。

IF 2.6 Q3 ONCOLOGY
Molecular and Cellular Oncology Pub Date : 2025-06-17 eCollection Date: 2025-01-01 DOI:10.1080/23723556.2025.2518774
M Rychla, J Hrabeta, P Jencova, N Podhorska, T Eckschlager
{"title":"v - atp酶ATP6V0D1亚基在神经母细胞瘤细胞化疗耐药和椭圆素诱导的细胞质空泡化中的作用。","authors":"M Rychla, J Hrabeta, P Jencova, N Podhorska, T Eckschlager","doi":"10.1080/23723556.2025.2518774","DOIUrl":null,"url":null,"abstract":"<p><p>Drug resistance remains a major obstacle in neuroblastoma treatment. Lysosomal sequestration, facilitated by the V-ATPase proton pump, is one of the mechanisms of chemoresistance. Overexpression of the ATP6V0D1 subunit of V-ATPase, previously reported in various cancers, was also observed in ellipticine-resistant neuroblastoma cells in our study. Neuroblastoma cells also exhibited increased lysosomal capacity and vacuolation after ellipticine treatment. Knockdown of ATP6V0D1, but not ATP6V1H, enhanced ellipticine sensitivity, suppressed proliferation and migration, decreased lysosomal uptake, and induced G2/M arrest in neuroblastoma cell lines. Notably, inhibiting another V-ATPase subunit, ATP6V1H, had no effect, highlighting the specific role of ATP6V0D1 in drug resistance. Ellipticine-induced vacuolation, identified as endoplasmic reticulum swelling, lacked evidence of paraptosis. ATP6V0D1 knockdown suppressed this phenomenon, whereas ATP6V1H silencing did not. Our findings underscore the importance of ATP6V0D1 in neuroblastoma and suggest potential therapeutic strategies targeting V-ATPase for overcoming drug resistance.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"12 1","pages":"2518774"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184147/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of V-ATPase ATP6V0D1 Subunit in Chemoresistance and Ellipticine-Induced Cytoplasmic Vacuolation in Neuroblastoma Cells.\",\"authors\":\"M Rychla, J Hrabeta, P Jencova, N Podhorska, T Eckschlager\",\"doi\":\"10.1080/23723556.2025.2518774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug resistance remains a major obstacle in neuroblastoma treatment. Lysosomal sequestration, facilitated by the V-ATPase proton pump, is one of the mechanisms of chemoresistance. Overexpression of the ATP6V0D1 subunit of V-ATPase, previously reported in various cancers, was also observed in ellipticine-resistant neuroblastoma cells in our study. Neuroblastoma cells also exhibited increased lysosomal capacity and vacuolation after ellipticine treatment. Knockdown of ATP6V0D1, but not ATP6V1H, enhanced ellipticine sensitivity, suppressed proliferation and migration, decreased lysosomal uptake, and induced G2/M arrest in neuroblastoma cell lines. Notably, inhibiting another V-ATPase subunit, ATP6V1H, had no effect, highlighting the specific role of ATP6V0D1 in drug resistance. Ellipticine-induced vacuolation, identified as endoplasmic reticulum swelling, lacked evidence of paraptosis. ATP6V0D1 knockdown suppressed this phenomenon, whereas ATP6V1H silencing did not. Our findings underscore the importance of ATP6V0D1 in neuroblastoma and suggest potential therapeutic strategies targeting V-ATPase for overcoming drug resistance.</p>\",\"PeriodicalId\":37292,\"journal\":{\"name\":\"Molecular and Cellular Oncology\",\"volume\":\"12 1\",\"pages\":\"2518774\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23723556.2025.2518774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23723556.2025.2518774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耐药仍然是神经母细胞瘤治疗的主要障碍。由v - atp酶质子泵促进的溶酶体隔离是化疗耐药的机制之一。V-ATPase的ATP6V0D1亚基的过表达,先前报道在各种癌症中,在我们的研究中也观察到椭圆耐药神经母细胞瘤细胞。在椭圆治疗后,神经母细胞瘤细胞也表现出溶酶体容量和空泡化的增加。在神经母细胞瘤细胞系中,敲低ATP6V0D1而不敲低ATP6V1H可增强椭圆素敏感性,抑制增殖和迁移,降低溶酶体摄取,诱导G2/M阻滞。值得注意的是,抑制另一个V-ATPase亚基ATP6V1H没有效果,这突出了ATP6V0D1在耐药中的特殊作用。椭圆素诱导的空泡形成,被认为是内质网肿胀,缺乏细胞凋亡的证据。ATP6V0D1敲除抑制了这一现象,而ATP6V1H沉默则没有。我们的研究结果强调了ATP6V0D1在神经母细胞瘤中的重要性,并提出了针对V-ATPase克服耐药的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of V-ATPase ATP6V0D1 Subunit in Chemoresistance and Ellipticine-Induced Cytoplasmic Vacuolation in Neuroblastoma Cells.

Drug resistance remains a major obstacle in neuroblastoma treatment. Lysosomal sequestration, facilitated by the V-ATPase proton pump, is one of the mechanisms of chemoresistance. Overexpression of the ATP6V0D1 subunit of V-ATPase, previously reported in various cancers, was also observed in ellipticine-resistant neuroblastoma cells in our study. Neuroblastoma cells also exhibited increased lysosomal capacity and vacuolation after ellipticine treatment. Knockdown of ATP6V0D1, but not ATP6V1H, enhanced ellipticine sensitivity, suppressed proliferation and migration, decreased lysosomal uptake, and induced G2/M arrest in neuroblastoma cell lines. Notably, inhibiting another V-ATPase subunit, ATP6V1H, had no effect, highlighting the specific role of ATP6V0D1 in drug resistance. Ellipticine-induced vacuolation, identified as endoplasmic reticulum swelling, lacked evidence of paraptosis. ATP6V0D1 knockdown suppressed this phenomenon, whereas ATP6V1H silencing did not. Our findings underscore the importance of ATP6V0D1 in neuroblastoma and suggest potential therapeutic strategies targeting V-ATPase for overcoming drug resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Oncology
Molecular and Cellular Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
3.20
自引率
0.00%
发文量
18
期刊介绍: For a long time, solid neoplasms have been viewed as relatively homogeneous entities composed for the most part of malignant cells. It is now clear that tumors are highly heterogeneous structures that evolve in the context of intimate interactions between cancer cells and endothelial, stromal as well as immune cells. During the past few years, experimental and clinical oncologists have witnessed several conceptual transitions of this type. Molecular and Cellular Oncology (MCO) emerges within this conceptual framework as a high-profile forum for the publication of fundamental, translational and clinical research on cancer. The scope of MCO is broad. Submissions dealing with all aspects of oncogenesis, tumor progression and response to therapy will be welcome, irrespective of whether they focus on solid or hematological neoplasms. MCO has gathered leading scientists with expertise in multiple areas of cancer research and other fields of investigation to constitute a large, interdisciplinary, Editorial Board that will ensure the quality of articles accepted for publication. MCO will publish Original Research Articles, Brief Reports, Reviews, Short Reviews, Commentaries, Author Views (auto-commentaries) and Meeting Reports dealing with all aspects of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信