Dong-Yue Wen, Jia-Min Chen, Zhi-Ping Tang, Jin-Shu Pang, Qiong Qin, Lu Zhang, Yun He, Hong Yang
{"title":"深度学习辅助超声预测胰腺癌患者淋巴结转移的临床价值。","authors":"Dong-Yue Wen, Jia-Min Chen, Zhi-Ping Tang, Jin-Shu Pang, Qiong Qin, Lu Zhang, Yun He, Hong Yang","doi":"10.1080/14796694.2025.2520149","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) derived from ultrasound images to improve predictive accuracy for lymph node metastasis (LNM) in pancreatic cancer (PC) patients.</p><p><strong>Methods: </strong>A retrospective analysis of 249 histopathologically confirmed PC cases, including 78 with LNM, was conducted, with an 8:2 division into training and testing cohorts. Eight transfer learning models and a baseline logistic regression model incorporating handcrafted radiomic and clinicopathological features were developed to evaluate predictive performance. Diagnostic effectiveness was assessed for junior and senior ultrasound physicians, both with and without DLRN assistance.</p><p><strong>Results: </strong>InceptionV3 showed the highest performance among DL models (AUC = 0.844), while the DLRN model, integrating deep learning and radiomic features, demonstrated superior accuracy (AUC = 0.909), robust calibration, and significant clinical utility per decision curve analysis. DLRN assistance notably enhanced diagnostic performance, with AUC improvements of 0.238 (<i>p</i> = 0.006) for junior and 0.152 (<i>p</i> = 0.085) for senior physicians.</p><p><strong>Conclusion: </strong>The ultrasound-based DLRN model exhibits strong predictive capability for LNM in PC, offering a valuable decision-support tool that bolsters diagnostic accuracy, especially among less experienced clinicians, thereby supporting more tailored therapeutic strategies for PC patients.</p>","PeriodicalId":12672,"journal":{"name":"Future oncology","volume":" ","pages":"2335-2345"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323435/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical benefits of deep learning-assisted ultrasound in predicting lymph node metastasis in pancreatic cancer patients.\",\"authors\":\"Dong-Yue Wen, Jia-Min Chen, Zhi-Ping Tang, Jin-Shu Pang, Qiong Qin, Lu Zhang, Yun He, Hong Yang\",\"doi\":\"10.1080/14796694.2025.2520149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) derived from ultrasound images to improve predictive accuracy for lymph node metastasis (LNM) in pancreatic cancer (PC) patients.</p><p><strong>Methods: </strong>A retrospective analysis of 249 histopathologically confirmed PC cases, including 78 with LNM, was conducted, with an 8:2 division into training and testing cohorts. Eight transfer learning models and a baseline logistic regression model incorporating handcrafted radiomic and clinicopathological features were developed to evaluate predictive performance. Diagnostic effectiveness was assessed for junior and senior ultrasound physicians, both with and without DLRN assistance.</p><p><strong>Results: </strong>InceptionV3 showed the highest performance among DL models (AUC = 0.844), while the DLRN model, integrating deep learning and radiomic features, demonstrated superior accuracy (AUC = 0.909), robust calibration, and significant clinical utility per decision curve analysis. DLRN assistance notably enhanced diagnostic performance, with AUC improvements of 0.238 (<i>p</i> = 0.006) for junior and 0.152 (<i>p</i> = 0.085) for senior physicians.</p><p><strong>Conclusion: </strong>The ultrasound-based DLRN model exhibits strong predictive capability for LNM in PC, offering a valuable decision-support tool that bolsters diagnostic accuracy, especially among less experienced clinicians, thereby supporting more tailored therapeutic strategies for PC patients.</p>\",\"PeriodicalId\":12672,\"journal\":{\"name\":\"Future oncology\",\"volume\":\" \",\"pages\":\"2335-2345\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323435/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14796694.2025.2520149\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14796694.2025.2520149","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Clinical benefits of deep learning-assisted ultrasound in predicting lymph node metastasis in pancreatic cancer patients.
Aim: This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) derived from ultrasound images to improve predictive accuracy for lymph node metastasis (LNM) in pancreatic cancer (PC) patients.
Methods: A retrospective analysis of 249 histopathologically confirmed PC cases, including 78 with LNM, was conducted, with an 8:2 division into training and testing cohorts. Eight transfer learning models and a baseline logistic regression model incorporating handcrafted radiomic and clinicopathological features were developed to evaluate predictive performance. Diagnostic effectiveness was assessed for junior and senior ultrasound physicians, both with and without DLRN assistance.
Results: InceptionV3 showed the highest performance among DL models (AUC = 0.844), while the DLRN model, integrating deep learning and radiomic features, demonstrated superior accuracy (AUC = 0.909), robust calibration, and significant clinical utility per decision curve analysis. DLRN assistance notably enhanced diagnostic performance, with AUC improvements of 0.238 (p = 0.006) for junior and 0.152 (p = 0.085) for senior physicians.
Conclusion: The ultrasound-based DLRN model exhibits strong predictive capability for LNM in PC, offering a valuable decision-support tool that bolsters diagnostic accuracy, especially among less experienced clinicians, thereby supporting more tailored therapeutic strategies for PC patients.
期刊介绍:
Future Oncology (ISSN 1479-6694) provides a forum for a new era of cancer care. The journal focuses on the most important advances and highlights their relevance in the clinical setting. Furthermore, Future Oncology delivers essential information in concise, at-a-glance article formats - vital in delivering information to an increasingly time-constrained community.
The journal takes a forward-looking stance toward the scientific and clinical issues, together with the economic and policy issues that confront us in this new era of cancer care. The journal includes literature awareness such as the latest developments in radiotherapy and immunotherapy, concise commentary and analysis, and full review articles all of which provide key findings, translational to the clinical setting.