CODARFE:解开基于微生物组的连续环境变量预测。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Murilo Caminotto Barbosa, João Fernando Marques da Silva, Leonardo Cardoso Alves, Robert D Finn, Alexandre Rossi Paschoal
{"title":"CODARFE:解开基于微生物组的连续环境变量预测。","authors":"Murilo Caminotto Barbosa, João Fernando Marques da Silva, Leonardo Cardoso Alves, Robert D Finn, Alexandre Rossi Paschoal","doi":"10.1093/gigascience/giaf055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the surge in microbiome data acquisition, there is a limited availability of tools capable of effectively analyzing it and identifying correlations between taxonomic compositions and continuous environmental factors. Furthermore, existing tools also do not predict the environmental factors in new samples, underscoring the pressing need for innovative solutions to enhance our understanding of microbiome dynamics and fulfill the prediction gap. Here we introduce CODARFE, a novel tool for sparse compositional microbiome predictor selection and prediction of continuous environmental factors.</p><p><strong>Results: </strong>We tested CODARFE against 4 state-of-the-art tools in 2 experiments. First, CODARFE outperformed predictor selection in 21 of 24 databases in terms of correlation. Second, among all the tools, CODARFE achieved the highest number of previously identified bacteria linked to environmental factors for human data-that is, at least 7% more. We also tested CODARFE in a cross-study, using the same biome but under different external effects, using a model trained on 1 dataset to predict environmental factors on another dataset, achieving 11% of mean absolute percentage error. Finally, CODARFE is available in 5 formats, including a Windows version with a graphical interface, to installable source code for Linux servers and an embedded Jupyter notebook available at MGnify.</p><p><strong>Conclusions: </strong>Our findings underscore the robustness and broad applicability of CODARFE across diverse fields, even under varying experimental conditions. Additionally, the ability to predict outcomes in new samples allows for the generation of new insights in previously unexplored contexts, providing researchers with a versatile tool.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365963/pdf/","citationCount":"0","resultStr":"{\"title\":\"CODARFE: Unlocking the prediction of continuous environmental variables based on microbiome.\",\"authors\":\"Murilo Caminotto Barbosa, João Fernando Marques da Silva, Leonardo Cardoso Alves, Robert D Finn, Alexandre Rossi Paschoal\",\"doi\":\"10.1093/gigascience/giaf055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite the surge in microbiome data acquisition, there is a limited availability of tools capable of effectively analyzing it and identifying correlations between taxonomic compositions and continuous environmental factors. Furthermore, existing tools also do not predict the environmental factors in new samples, underscoring the pressing need for innovative solutions to enhance our understanding of microbiome dynamics and fulfill the prediction gap. Here we introduce CODARFE, a novel tool for sparse compositional microbiome predictor selection and prediction of continuous environmental factors.</p><p><strong>Results: </strong>We tested CODARFE against 4 state-of-the-art tools in 2 experiments. First, CODARFE outperformed predictor selection in 21 of 24 databases in terms of correlation. Second, among all the tools, CODARFE achieved the highest number of previously identified bacteria linked to environmental factors for human data-that is, at least 7% more. We also tested CODARFE in a cross-study, using the same biome but under different external effects, using a model trained on 1 dataset to predict environmental factors on another dataset, achieving 11% of mean absolute percentage error. Finally, CODARFE is available in 5 formats, including a Windows version with a graphical interface, to installable source code for Linux servers and an embedded Jupyter notebook available at MGnify.</p><p><strong>Conclusions: </strong>Our findings underscore the robustness and broad applicability of CODARFE across diverse fields, even under varying experimental conditions. Additionally, the ability to predict outcomes in new samples allows for the generation of new insights in previously unexplored contexts, providing researchers with a versatile tool.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf055\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:尽管微生物组数据采集激增,但能够有效分析微生物组数据并识别分类组成与连续环境因素之间相关性的工具有限。此外,现有的工具也不能预测新样品中的环境因素,这强调了迫切需要创新的解决方案来增强我们对微生物组动力学的理解并填补预测空白。本文介绍了一种用于稀疏组成微生物组预测因子选择和连续环境因子预测的新工具CODARFE。结果:我们在2个实验中对CODARFE与4种最先进的工具进行了测试。首先,在相关性方面,CODARFE在24个数据库中的21个中优于预测器选择。其次,在所有工具中,CODARFE获得了与人类数据的环境因素相关的先前鉴定细菌的最高数量,即至少高出7%。我们还在交叉研究中测试了CODARFE,使用相同的生物群系,但在不同的外部影响下,使用在一个数据集上训练的模型来预测另一个数据集上的环境因素,实现了11%的平均绝对百分比误差。最后,CODARFE有5种格式,包括带有图形界面的Windows版本,用于安装Linux服务器的源代码和MGnify提供的嵌入式Jupyter笔记本。结论:我们的研究结果强调了CODARFE在不同领域的稳健性和广泛适用性,即使在不同的实验条件下也是如此。此外,在新样本中预测结果的能力允许在以前未探索的环境中产生新的见解,为研究人员提供了一个通用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CODARFE: Unlocking the prediction of continuous environmental variables based on microbiome.

Background: Despite the surge in microbiome data acquisition, there is a limited availability of tools capable of effectively analyzing it and identifying correlations between taxonomic compositions and continuous environmental factors. Furthermore, existing tools also do not predict the environmental factors in new samples, underscoring the pressing need for innovative solutions to enhance our understanding of microbiome dynamics and fulfill the prediction gap. Here we introduce CODARFE, a novel tool for sparse compositional microbiome predictor selection and prediction of continuous environmental factors.

Results: We tested CODARFE against 4 state-of-the-art tools in 2 experiments. First, CODARFE outperformed predictor selection in 21 of 24 databases in terms of correlation. Second, among all the tools, CODARFE achieved the highest number of previously identified bacteria linked to environmental factors for human data-that is, at least 7% more. We also tested CODARFE in a cross-study, using the same biome but under different external effects, using a model trained on 1 dataset to predict environmental factors on another dataset, achieving 11% of mean absolute percentage error. Finally, CODARFE is available in 5 formats, including a Windows version with a graphical interface, to installable source code for Linux servers and an embedded Jupyter notebook available at MGnify.

Conclusions: Our findings underscore the robustness and broad applicability of CODARFE across diverse fields, even under varying experimental conditions. Additionally, the ability to predict outcomes in new samples allows for the generation of new insights in previously unexplored contexts, providing researchers with a versatile tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信