Murilo Caminotto Barbosa, João Fernando Marques da Silva, Leonardo Cardoso Alves, Robert D Finn, Alexandre Rossi Paschoal
{"title":"CODARFE:解开基于微生物组的连续环境变量预测。","authors":"Murilo Caminotto Barbosa, João Fernando Marques da Silva, Leonardo Cardoso Alves, Robert D Finn, Alexandre Rossi Paschoal","doi":"10.1093/gigascience/giaf055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the surge in microbiome data acquisition, there is a limited availability of tools capable of effectively analyzing it and identifying correlations between taxonomic compositions and continuous environmental factors. Furthermore, existing tools also do not predict the environmental factors in new samples, underscoring the pressing need for innovative solutions to enhance our understanding of microbiome dynamics and fulfill the prediction gap. Here we introduce CODARFE, a novel tool for sparse compositional microbiome predictor selection and prediction of continuous environmental factors.</p><p><strong>Results: </strong>We tested CODARFE against 4 state-of-the-art tools in 2 experiments. First, CODARFE outperformed predictor selection in 21 of 24 databases in terms of correlation. Second, among all the tools, CODARFE achieved the highest number of previously identified bacteria linked to environmental factors for human data-that is, at least 7% more. We also tested CODARFE in a cross-study, using the same biome but under different external effects, using a model trained on 1 dataset to predict environmental factors on another dataset, achieving 11% of mean absolute percentage error. Finally, CODARFE is available in 5 formats, including a Windows version with a graphical interface, to installable source code for Linux servers and an embedded Jupyter notebook available at MGnify.</p><p><strong>Conclusions: </strong>Our findings underscore the robustness and broad applicability of CODARFE across diverse fields, even under varying experimental conditions. Additionally, the ability to predict outcomes in new samples allows for the generation of new insights in previously unexplored contexts, providing researchers with a versatile tool.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365963/pdf/","citationCount":"0","resultStr":"{\"title\":\"CODARFE: Unlocking the prediction of continuous environmental variables based on microbiome.\",\"authors\":\"Murilo Caminotto Barbosa, João Fernando Marques da Silva, Leonardo Cardoso Alves, Robert D Finn, Alexandre Rossi Paschoal\",\"doi\":\"10.1093/gigascience/giaf055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite the surge in microbiome data acquisition, there is a limited availability of tools capable of effectively analyzing it and identifying correlations between taxonomic compositions and continuous environmental factors. Furthermore, existing tools also do not predict the environmental factors in new samples, underscoring the pressing need for innovative solutions to enhance our understanding of microbiome dynamics and fulfill the prediction gap. Here we introduce CODARFE, a novel tool for sparse compositional microbiome predictor selection and prediction of continuous environmental factors.</p><p><strong>Results: </strong>We tested CODARFE against 4 state-of-the-art tools in 2 experiments. First, CODARFE outperformed predictor selection in 21 of 24 databases in terms of correlation. Second, among all the tools, CODARFE achieved the highest number of previously identified bacteria linked to environmental factors for human data-that is, at least 7% more. We also tested CODARFE in a cross-study, using the same biome but under different external effects, using a model trained on 1 dataset to predict environmental factors on another dataset, achieving 11% of mean absolute percentage error. Finally, CODARFE is available in 5 formats, including a Windows version with a graphical interface, to installable source code for Linux servers and an embedded Jupyter notebook available at MGnify.</p><p><strong>Conclusions: </strong>Our findings underscore the robustness and broad applicability of CODARFE across diverse fields, even under varying experimental conditions. Additionally, the ability to predict outcomes in new samples allows for the generation of new insights in previously unexplored contexts, providing researchers with a versatile tool.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf055\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
CODARFE: Unlocking the prediction of continuous environmental variables based on microbiome.
Background: Despite the surge in microbiome data acquisition, there is a limited availability of tools capable of effectively analyzing it and identifying correlations between taxonomic compositions and continuous environmental factors. Furthermore, existing tools also do not predict the environmental factors in new samples, underscoring the pressing need for innovative solutions to enhance our understanding of microbiome dynamics and fulfill the prediction gap. Here we introduce CODARFE, a novel tool for sparse compositional microbiome predictor selection and prediction of continuous environmental factors.
Results: We tested CODARFE against 4 state-of-the-art tools in 2 experiments. First, CODARFE outperformed predictor selection in 21 of 24 databases in terms of correlation. Second, among all the tools, CODARFE achieved the highest number of previously identified bacteria linked to environmental factors for human data-that is, at least 7% more. We also tested CODARFE in a cross-study, using the same biome but under different external effects, using a model trained on 1 dataset to predict environmental factors on another dataset, achieving 11% of mean absolute percentage error. Finally, CODARFE is available in 5 formats, including a Windows version with a graphical interface, to installable source code for Linux servers and an embedded Jupyter notebook available at MGnify.
Conclusions: Our findings underscore the robustness and broad applicability of CODARFE across diverse fields, even under varying experimental conditions. Additionally, the ability to predict outcomes in new samples allows for the generation of new insights in previously unexplored contexts, providing researchers with a versatile tool.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.