Abiel K Biney, Caroline R Schultz, Michael F Stone, Donna A Nguyen, Annie Wang, Marcio de Araujo Furtado, Lucille A Lumley
{"title":"半胱胺可减少大鼠躯体诱导的癫痫持续状态后的神经变性和癫痫发生。","authors":"Abiel K Biney, Caroline R Schultz, Michael F Stone, Donna A Nguyen, Annie Wang, Marcio de Araujo Furtado, Lucille A Lumley","doi":"10.3389/ebm.2025.10598","DOIUrl":null,"url":null,"abstract":"<p><p>Acute exposure to a seizure-inducing dose of an organophosphorus nerve agent inhibits acetylcholinesterase, leading to pharmacoresistance if benzodiazepine treatment is delayed. Following soman-induced status epilepticus (SE) in rats, prolonged seizure is associated with severe and widespread neurodegeneration. We evaluated the aminothiol cystamine, the oxidized form of cysteamine, for neuroprotective potential against soman-induced SE and associated neurodegeneration. Cystamine has a myriad of effects including antioxidant properties, neuroprotective effects, and immunomodulation, among others, which is of interest in evaluating neuroprotective efficacy against cholinergic-induced neurodegeneration. Adult male rats implanted with telemetry transmitters for continuous EEG recording were exposed to soman and treated with the muscarinic antagonist atropine sulfate and the oxime asoxime dimethanesulfonate 1 min after exposure to increase survival. Midazolam was administered 30 min after seizure onset. Cystamine (10 or 50 mg/kg) or vehicle was administered 30 min after seizure onset and again 4 h after soman exposure. The initial seizure duration, the EEG power integral at 6 h after exposure, and the percentage of rats that developed spontaneous recurrent seizure were reduced in rats treated with cystamine, compared to those that received only midazolam. In addition, cystamine reduced neurodegeneration in seizure-sensitive brain regions following soman exposure, compared to midazolam. Our findings highlight the potential for aminothiols to serve as adjunctive therapy to midazolam in treating cholinergic-induced toxicity and suggest broader applications of aminothiols in neuroprotection and neurological disorders.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10598"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183515/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cystamine reduces neurodegeneration and epileptogenesis following soman-induced status epilepticus in rats.\",\"authors\":\"Abiel K Biney, Caroline R Schultz, Michael F Stone, Donna A Nguyen, Annie Wang, Marcio de Araujo Furtado, Lucille A Lumley\",\"doi\":\"10.3389/ebm.2025.10598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute exposure to a seizure-inducing dose of an organophosphorus nerve agent inhibits acetylcholinesterase, leading to pharmacoresistance if benzodiazepine treatment is delayed. Following soman-induced status epilepticus (SE) in rats, prolonged seizure is associated with severe and widespread neurodegeneration. We evaluated the aminothiol cystamine, the oxidized form of cysteamine, for neuroprotective potential against soman-induced SE and associated neurodegeneration. Cystamine has a myriad of effects including antioxidant properties, neuroprotective effects, and immunomodulation, among others, which is of interest in evaluating neuroprotective efficacy against cholinergic-induced neurodegeneration. Adult male rats implanted with telemetry transmitters for continuous EEG recording were exposed to soman and treated with the muscarinic antagonist atropine sulfate and the oxime asoxime dimethanesulfonate 1 min after exposure to increase survival. Midazolam was administered 30 min after seizure onset. Cystamine (10 or 50 mg/kg) or vehicle was administered 30 min after seizure onset and again 4 h after soman exposure. The initial seizure duration, the EEG power integral at 6 h after exposure, and the percentage of rats that developed spontaneous recurrent seizure were reduced in rats treated with cystamine, compared to those that received only midazolam. In addition, cystamine reduced neurodegeneration in seizure-sensitive brain regions following soman exposure, compared to midazolam. Our findings highlight the potential for aminothiols to serve as adjunctive therapy to midazolam in treating cholinergic-induced toxicity and suggest broader applications of aminothiols in neuroprotection and neurological disorders.</p>\",\"PeriodicalId\":12163,\"journal\":{\"name\":\"Experimental Biology and Medicine\",\"volume\":\"250 \",\"pages\":\"10598\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183515/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/ebm.2025.10598\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10598","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Cystamine reduces neurodegeneration and epileptogenesis following soman-induced status epilepticus in rats.
Acute exposure to a seizure-inducing dose of an organophosphorus nerve agent inhibits acetylcholinesterase, leading to pharmacoresistance if benzodiazepine treatment is delayed. Following soman-induced status epilepticus (SE) in rats, prolonged seizure is associated with severe and widespread neurodegeneration. We evaluated the aminothiol cystamine, the oxidized form of cysteamine, for neuroprotective potential against soman-induced SE and associated neurodegeneration. Cystamine has a myriad of effects including antioxidant properties, neuroprotective effects, and immunomodulation, among others, which is of interest in evaluating neuroprotective efficacy against cholinergic-induced neurodegeneration. Adult male rats implanted with telemetry transmitters for continuous EEG recording were exposed to soman and treated with the muscarinic antagonist atropine sulfate and the oxime asoxime dimethanesulfonate 1 min after exposure to increase survival. Midazolam was administered 30 min after seizure onset. Cystamine (10 or 50 mg/kg) or vehicle was administered 30 min after seizure onset and again 4 h after soman exposure. The initial seizure duration, the EEG power integral at 6 h after exposure, and the percentage of rats that developed spontaneous recurrent seizure were reduced in rats treated with cystamine, compared to those that received only midazolam. In addition, cystamine reduced neurodegeneration in seizure-sensitive brain regions following soman exposure, compared to midazolam. Our findings highlight the potential for aminothiols to serve as adjunctive therapy to midazolam in treating cholinergic-induced toxicity and suggest broader applications of aminothiols in neuroprotection and neurological disorders.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.