Eun Hye Park, Kally C O'Reilly Sparks, Griffin Grubbs, David Taborga, Kyndall Nicholas, Armaan S Ahmed, Natalie Ruiz-Péreza, Natalie Kim, Simon Segura-Carrillo, André A Fenton
{"title":"无内侧前额叶皮层的行为认知控制与海马信息加工。","authors":"Eun Hye Park, Kally C O'Reilly Sparks, Griffin Grubbs, David Taborga, Kyndall Nicholas, Armaan S Ahmed, Natalie Ruiz-Péreza, Natalie Kim, Simon Segura-Carrillo, André A Fenton","doi":"10.7554/eLife.104475","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive control tasks require using one class of information while ignoring competing classes of information. The central role of the medial prefrontal cortex (mPFC) in cognitive control is well established in the primate literature and largely accepted in the rodent literature because mPFC damage causes deficits in tasks that may require cognitive control, as inferred, typically from the task design. In prior work, we used an active place avoidance task where a rat or mouse on a rotating arena is required to avoid the stationary task-relevant locations of a mild shock and ignore the rotating task-irrelevant locations of those shocks. The task is impaired by hippocampal manipulations, and the discharge of hippocampal place cell populations judiciously alternates between representing stationary locations near the shock zone and rotating locations far from the shock zone, demonstrating cognitive control concurrently in behavior and the hippocampal representation of spatial information. Here, we test whether rat mPFC lesion impairs the active place avoidance task to evaluate two competing hypotheses, a 'central-computation' hypothesis that the mPFC is essential for the computations required for cognitive control and an alternative 'local-computation' hypothesis that other brain areas can perform the computations required for cognitive control, independent of mPFC. Ibotenic acid lesion of the mPFC was effective, damaging the cingulate, prelimbic, and infralimbic cortices. The lesion also altered the normal coordination of metabolic activity across remaining structures. The lesion did not impair learning to avoid the initial location of shock or long-term place avoidance memory, but impaired avoidance after the shock was relocated. The lesion also did not impair the alternation between task-relevant and task-irrelevant hippocampal representations of place information. These findings support the local-computation hypothesis that computations required for cognitive control can occur locally in brain networks independently of the mPFC.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive control of behavior and hippocampal information processing without medial prefrontal cortex.\",\"authors\":\"Eun Hye Park, Kally C O'Reilly Sparks, Griffin Grubbs, David Taborga, Kyndall Nicholas, Armaan S Ahmed, Natalie Ruiz-Péreza, Natalie Kim, Simon Segura-Carrillo, André A Fenton\",\"doi\":\"10.7554/eLife.104475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cognitive control tasks require using one class of information while ignoring competing classes of information. The central role of the medial prefrontal cortex (mPFC) in cognitive control is well established in the primate literature and largely accepted in the rodent literature because mPFC damage causes deficits in tasks that may require cognitive control, as inferred, typically from the task design. In prior work, we used an active place avoidance task where a rat or mouse on a rotating arena is required to avoid the stationary task-relevant locations of a mild shock and ignore the rotating task-irrelevant locations of those shocks. The task is impaired by hippocampal manipulations, and the discharge of hippocampal place cell populations judiciously alternates between representing stationary locations near the shock zone and rotating locations far from the shock zone, demonstrating cognitive control concurrently in behavior and the hippocampal representation of spatial information. Here, we test whether rat mPFC lesion impairs the active place avoidance task to evaluate two competing hypotheses, a 'central-computation' hypothesis that the mPFC is essential for the computations required for cognitive control and an alternative 'local-computation' hypothesis that other brain areas can perform the computations required for cognitive control, independent of mPFC. Ibotenic acid lesion of the mPFC was effective, damaging the cingulate, prelimbic, and infralimbic cortices. The lesion also altered the normal coordination of metabolic activity across remaining structures. The lesion did not impair learning to avoid the initial location of shock or long-term place avoidance memory, but impaired avoidance after the shock was relocated. The lesion also did not impair the alternation between task-relevant and task-irrelevant hippocampal representations of place information. These findings support the local-computation hypothesis that computations required for cognitive control can occur locally in brain networks independently of the mPFC.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"13 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.104475\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.104475","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Cognitive control of behavior and hippocampal information processing without medial prefrontal cortex.
Cognitive control tasks require using one class of information while ignoring competing classes of information. The central role of the medial prefrontal cortex (mPFC) in cognitive control is well established in the primate literature and largely accepted in the rodent literature because mPFC damage causes deficits in tasks that may require cognitive control, as inferred, typically from the task design. In prior work, we used an active place avoidance task where a rat or mouse on a rotating arena is required to avoid the stationary task-relevant locations of a mild shock and ignore the rotating task-irrelevant locations of those shocks. The task is impaired by hippocampal manipulations, and the discharge of hippocampal place cell populations judiciously alternates between representing stationary locations near the shock zone and rotating locations far from the shock zone, demonstrating cognitive control concurrently in behavior and the hippocampal representation of spatial information. Here, we test whether rat mPFC lesion impairs the active place avoidance task to evaluate two competing hypotheses, a 'central-computation' hypothesis that the mPFC is essential for the computations required for cognitive control and an alternative 'local-computation' hypothesis that other brain areas can perform the computations required for cognitive control, independent of mPFC. Ibotenic acid lesion of the mPFC was effective, damaging the cingulate, prelimbic, and infralimbic cortices. The lesion also altered the normal coordination of metabolic activity across remaining structures. The lesion did not impair learning to avoid the initial location of shock or long-term place avoidance memory, but impaired avoidance after the shock was relocated. The lesion also did not impair the alternation between task-relevant and task-irrelevant hippocampal representations of place information. These findings support the local-computation hypothesis that computations required for cognitive control can occur locally in brain networks independently of the mPFC.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.