结合全玻片基础模型和梯度增强预测皮肤病理BRAF突变状态的新方法。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-06-06 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.06.017
Mohamed Albahri, Daniel Sauter, Felix Nensa, Georg Lodde, Elisabeth Livingstone, Dirk Schadendorf, Markus Kukuk
{"title":"结合全玻片基础模型和梯度增强预测皮肤病理BRAF突变状态的新方法。","authors":"Mohamed Albahri, Daniel Sauter, Felix Nensa, Georg Lodde, Elisabeth Livingstone, Dirk Schadendorf, Markus Kukuk","doi":"10.1016/j.csbj.2025.06.017","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the mutation status of proto-oncogene B-Rapidly Accelerated Fibrosarcoma (BRAF) is crucial in melanoma for guiding targeted therapies and improving patient outcomes. While genetic testing has become more accessible, histopathological examination remains central to routine diagnostics, and an image-based strategy could further streamline the associated time and cost. In this study, we propose a new machine learning framework that integrates a large-scale, pretrained foundation model (Prov-GigaPath) with a gradient-boosting classifier (XGBoost) to predict BRAF-V600 mutation status directly from histopathological slides. Our approach was trained and cross-validated on the Skin Cutaneous Melanoma (SKCM) dataset from The Cancer Genome Atlas (TCGA; 275 slides), where the fine-tuned Prov-GigaPath model alone achieved an average Area Under the Curve (AUC) of 0.653 during cross-validation. An additional test on 68 slides from the University Hospital Essen (UHE), Germany, yielded an AUC of 0.697 (95 % CI: 0.553-0.821). Incorporating XGBoost significantly improved performance, reaching an AUC of 0.824 (SD=0.043) during cross-validation and 0.772 (95 % CI: 0.650-0.886) on the independent set-representing a new state-of-the-art for image-only BRAF mutation prediction in melanoma. By employing a weakly supervised, data-efficient pipeline, this method reduces the need for extensive annotations and costly molecular assays. While these results are not intended to replace genetic testing at this stage, they mark a new milestone in predicting BRAF mutation status solely from histopathological slides-a concept not yet fully established in prior research-and underscore the potential for seamlessly integrating automated, AI-driven decision-support tools into diagnostic workflows, thereby expediting personalized therapy decisions and advancing precision oncology.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2503-2514"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12182775/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new approach combining a whole-slide foundation model and gradient boosting for predicting BRAF mutation status in dermatopathology.\",\"authors\":\"Mohamed Albahri, Daniel Sauter, Felix Nensa, Georg Lodde, Elisabeth Livingstone, Dirk Schadendorf, Markus Kukuk\",\"doi\":\"10.1016/j.csbj.2025.06.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining the mutation status of proto-oncogene B-Rapidly Accelerated Fibrosarcoma (BRAF) is crucial in melanoma for guiding targeted therapies and improving patient outcomes. While genetic testing has become more accessible, histopathological examination remains central to routine diagnostics, and an image-based strategy could further streamline the associated time and cost. In this study, we propose a new machine learning framework that integrates a large-scale, pretrained foundation model (Prov-GigaPath) with a gradient-boosting classifier (XGBoost) to predict BRAF-V600 mutation status directly from histopathological slides. Our approach was trained and cross-validated on the Skin Cutaneous Melanoma (SKCM) dataset from The Cancer Genome Atlas (TCGA; 275 slides), where the fine-tuned Prov-GigaPath model alone achieved an average Area Under the Curve (AUC) of 0.653 during cross-validation. An additional test on 68 slides from the University Hospital Essen (UHE), Germany, yielded an AUC of 0.697 (95 % CI: 0.553-0.821). Incorporating XGBoost significantly improved performance, reaching an AUC of 0.824 (SD=0.043) during cross-validation and 0.772 (95 % CI: 0.650-0.886) on the independent set-representing a new state-of-the-art for image-only BRAF mutation prediction in melanoma. By employing a weakly supervised, data-efficient pipeline, this method reduces the need for extensive annotations and costly molecular assays. While these results are not intended to replace genetic testing at this stage, they mark a new milestone in predicting BRAF mutation status solely from histopathological slides-a concept not yet fully established in prior research-and underscore the potential for seamlessly integrating automated, AI-driven decision-support tools into diagnostic workflows, thereby expediting personalized therapy decisions and advancing precision oncology.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2503-2514\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12182775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.06.017\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

确定原癌基因b -快速加速纤维肉瘤(BRAF)的突变状态对于指导黑色素瘤的靶向治疗和改善患者预后至关重要。虽然基因检测变得更容易获得,但组织病理学检查仍然是常规诊断的核心,而基于图像的策略可以进一步简化相关的时间和成本。在这项研究中,我们提出了一个新的机器学习框架,该框架集成了一个大规模的,预训练的基础模型(provi - gigapath)和一个梯度增强分类器(XGBoost),直接从组织病理切片预测BRAF-V600突变状态。我们的方法在癌症基因组图谱(TCGA)的皮肤皮肤黑色素瘤(SKCM)数据集上进行了训练和交叉验证;其中,在交叉验证期间,经过微调的provi - gigapath模型单独获得了0.653的平均曲线下面积(AUC)。另一项来自德国埃森大学医院(UHE)的68张载玻片的检测显示AUC为0.697(95 % CI: 0.553-0.821)。结合XGBoost显著提高了性能,在交叉验证中达到0.824 (SD=0.043)的AUC,在独立集上达到0.772(95 % CI: 0.650-0.886),代表了黑色素瘤中仅图像BRAF突变预测的新技术。通过采用弱监督,数据高效的管道,该方法减少了大量注释和昂贵的分子分析的需要。虽然这些结果并不打算在现阶段取代基因检测,但它们标志着仅从组织病理学幻灯片预测BRAF突变状态的一个新的里程碑-这一概念在先前的研究中尚未完全建立-并强调了将自动化,人工智能驱动的决策支持工具无缝集成到诊断工作流程中的潜力,从而加快个性化治疗决策并推进精准肿瘤学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach combining a whole-slide foundation model and gradient boosting for predicting BRAF mutation status in dermatopathology.

Determining the mutation status of proto-oncogene B-Rapidly Accelerated Fibrosarcoma (BRAF) is crucial in melanoma for guiding targeted therapies and improving patient outcomes. While genetic testing has become more accessible, histopathological examination remains central to routine diagnostics, and an image-based strategy could further streamline the associated time and cost. In this study, we propose a new machine learning framework that integrates a large-scale, pretrained foundation model (Prov-GigaPath) with a gradient-boosting classifier (XGBoost) to predict BRAF-V600 mutation status directly from histopathological slides. Our approach was trained and cross-validated on the Skin Cutaneous Melanoma (SKCM) dataset from The Cancer Genome Atlas (TCGA; 275 slides), where the fine-tuned Prov-GigaPath model alone achieved an average Area Under the Curve (AUC) of 0.653 during cross-validation. An additional test on 68 slides from the University Hospital Essen (UHE), Germany, yielded an AUC of 0.697 (95 % CI: 0.553-0.821). Incorporating XGBoost significantly improved performance, reaching an AUC of 0.824 (SD=0.043) during cross-validation and 0.772 (95 % CI: 0.650-0.886) on the independent set-representing a new state-of-the-art for image-only BRAF mutation prediction in melanoma. By employing a weakly supervised, data-efficient pipeline, this method reduces the need for extensive annotations and costly molecular assays. While these results are not intended to replace genetic testing at this stage, they mark a new milestone in predicting BRAF mutation status solely from histopathological slides-a concept not yet fully established in prior research-and underscore the potential for seamlessly integrating automated, AI-driven decision-support tools into diagnostic workflows, thereby expediting personalized therapy decisions and advancing precision oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信