{"title":"MFE-DDI:药物-药物相互作用预测的多视图特征编码框架。","authors":"Lingfeng Wang, Yinghong Li, Yaozheng Zhou, Liping Guo, Congzhou Chen","doi":"10.1016/j.csbj.2025.05.029","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug combination therapy has long been a vital approach for treating complex diseases by leveraging synergistic effects between drugs. However, drug-drug interactions (DDIs) are not uniformly beneficial. Accurate and rapid identification of DDIs is critical to mitigate drug-related side effects. Currently, many computational-based methods have been used to expedite the prediction of DDIs. However, most of these methods use a single perspective to obtain drug features, which have limited expressive capabilities and cannot fully represent the essential attributes of drugs. In this study, we propose the Multi-view Feature Embedding for drug-drug interaction prediction (MFE-DDI), which integrates SMILES information, molecular graph data and atom spatial semantic information to model drugs from multiple perspectives and encapsulate the intricate drug information crucial for predicting DDIs. Concurrently, the feature information extracted from different feature encoding channels is fused in the attention-based fusion module to fully convey the essence of drugs. Consequently, this approach enhances the efficacy of the DDI prediction task. Experimental results indicate that MFE-DDI surpasses other baseline methods on three datasets. Moreover, analysis experiments demonstrate the robustness of the model and the necessity of each component of the model. Case studies on newly approved drugs demonstrate the effectiveness of our method in real scenarios. The code and data used in MFE-DDI can be found at https://github.com/2019040445/MFE_DDI.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2473-2480"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181007/pdf/","citationCount":"0","resultStr":"{\"title\":\"MFE-DDI: A multi-view feature encoding framework for drug-drug interaction prediction.\",\"authors\":\"Lingfeng Wang, Yinghong Li, Yaozheng Zhou, Liping Guo, Congzhou Chen\",\"doi\":\"10.1016/j.csbj.2025.05.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidrug combination therapy has long been a vital approach for treating complex diseases by leveraging synergistic effects between drugs. However, drug-drug interactions (DDIs) are not uniformly beneficial. Accurate and rapid identification of DDIs is critical to mitigate drug-related side effects. Currently, many computational-based methods have been used to expedite the prediction of DDIs. However, most of these methods use a single perspective to obtain drug features, which have limited expressive capabilities and cannot fully represent the essential attributes of drugs. In this study, we propose the Multi-view Feature Embedding for drug-drug interaction prediction (MFE-DDI), which integrates SMILES information, molecular graph data and atom spatial semantic information to model drugs from multiple perspectives and encapsulate the intricate drug information crucial for predicting DDIs. Concurrently, the feature information extracted from different feature encoding channels is fused in the attention-based fusion module to fully convey the essence of drugs. Consequently, this approach enhances the efficacy of the DDI prediction task. Experimental results indicate that MFE-DDI surpasses other baseline methods on three datasets. Moreover, analysis experiments demonstrate the robustness of the model and the necessity of each component of the model. Case studies on newly approved drugs demonstrate the effectiveness of our method in real scenarios. The code and data used in MFE-DDI can be found at https://github.com/2019040445/MFE_DDI.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2473-2480\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181007/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.05.029\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.05.029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
MFE-DDI: A multi-view feature encoding framework for drug-drug interaction prediction.
Multidrug combination therapy has long been a vital approach for treating complex diseases by leveraging synergistic effects between drugs. However, drug-drug interactions (DDIs) are not uniformly beneficial. Accurate and rapid identification of DDIs is critical to mitigate drug-related side effects. Currently, many computational-based methods have been used to expedite the prediction of DDIs. However, most of these methods use a single perspective to obtain drug features, which have limited expressive capabilities and cannot fully represent the essential attributes of drugs. In this study, we propose the Multi-view Feature Embedding for drug-drug interaction prediction (MFE-DDI), which integrates SMILES information, molecular graph data and atom spatial semantic information to model drugs from multiple perspectives and encapsulate the intricate drug information crucial for predicting DDIs. Concurrently, the feature information extracted from different feature encoding channels is fused in the attention-based fusion module to fully convey the essence of drugs. Consequently, this approach enhances the efficacy of the DDI prediction task. Experimental results indicate that MFE-DDI surpasses other baseline methods on three datasets. Moreover, analysis experiments demonstrate the robustness of the model and the necessity of each component of the model. Case studies on newly approved drugs demonstrate the effectiveness of our method in real scenarios. The code and data used in MFE-DDI can be found at https://github.com/2019040445/MFE_DDI.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology