图- rpi:通过图自编码器和自监督学习策略预测rna -蛋白质相互作用。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jiahui Guan, Lantian Yao, Peilin Xie, Zhihao Zhao, Dian Meng, Tzong-Yi Lee, Junwen Wang, Ying-Chih Chiang
{"title":"图- rpi:通过图自编码器和自监督学习策略预测rna -蛋白质相互作用。","authors":"Jiahui Guan, Lantian Yao, Peilin Xie, Zhihao Zhao, Dian Meng, Tzong-Yi Lee, Junwen Wang, Ying-Chih Chiang","doi":"10.1093/bib/bbaf292","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-protein interactions (RPIs) are essential for many biological functions and are associated with various diseases. Traditional methods for detecting RPIs are labor-intensive and costly, necessitating efficient computational methods. In this study, we proposed a novel sequence-based RPI prediction framework based on graph neural networks (GNNs) that addressed key limitations of existing methods, such as inadequate feature integration and negative sample construction. Our method represented RNAs and proteins as nodes in a unified interaction graph, enhancing the representation of RPI pairs through multi-feature fusion and employing self-supervised learning strategies for model training. The model's performance was validated through five-fold cross-validation, achieving accuracy of 0.880, 0.811, 0.950, 0.979, 0.910, and 0.924 on the RPI488, RPI369, RPI2241, RPI1807, RPI1446, and RPImerged datasets, respectively. Additionally, in cross-species generalization tests, our method outperformed existing methods, achieving an overall accuracy of 0.989 across 10 093 RPI pairs. Compared with other state-of-the-art RPI prediction methods, our approach demonstrates greater robustness and stability in RPI prediction, highlighting its potential for broad biological applications and large-scale RPI analysis.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graph-RPI: predicting RNA-protein interactions via graph autoencoder and self-supervised learning strategies.\",\"authors\":\"Jiahui Guan, Lantian Yao, Peilin Xie, Zhihao Zhao, Dian Meng, Tzong-Yi Lee, Junwen Wang, Ying-Chih Chiang\",\"doi\":\"10.1093/bib/bbaf292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA-protein interactions (RPIs) are essential for many biological functions and are associated with various diseases. Traditional methods for detecting RPIs are labor-intensive and costly, necessitating efficient computational methods. In this study, we proposed a novel sequence-based RPI prediction framework based on graph neural networks (GNNs) that addressed key limitations of existing methods, such as inadequate feature integration and negative sample construction. Our method represented RNAs and proteins as nodes in a unified interaction graph, enhancing the representation of RPI pairs through multi-feature fusion and employing self-supervised learning strategies for model training. The model's performance was validated through five-fold cross-validation, achieving accuracy of 0.880, 0.811, 0.950, 0.979, 0.910, and 0.924 on the RPI488, RPI369, RPI2241, RPI1807, RPI1446, and RPImerged datasets, respectively. Additionally, in cross-species generalization tests, our method outperformed existing methods, achieving an overall accuracy of 0.989 across 10 093 RPI pairs. Compared with other state-of-the-art RPI prediction methods, our approach demonstrates greater robustness and stability in RPI prediction, highlighting its potential for broad biological applications and large-scale RPI analysis.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf292\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf292","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

rna -蛋白相互作用(rpi)对许多生物学功能至关重要,并与多种疾病有关。传统的rpi检测方法劳动强度大,成本高,需要高效的计算方法。在这项研究中,我们提出了一种新的基于序列的RPI预测框架,该框架基于图神经网络(gnn),解决了现有方法的关键局限性,如特征集成不足和负样本构建。我们的方法将rna和蛋白质作为统一交互图中的节点,通过多特征融合增强RPI对的表示,并采用自监督学习策略进行模型训练。通过五重交叉验证验证了模型的性能,在RPI488、RPI369、RPI2241、RPI1807、RPI1446和RPImerged数据集上的准确率分别为0.880、0.811、0.950、0.979、0.910和0.924。此外,在跨物种泛化测试中,我们的方法优于现有方法,在10 093对RPI中实现了0.989的总体精度。与其他最先进的RPI预测方法相比,我们的方法在RPI预测中表现出更强的鲁棒性和稳定性,突出了其广泛的生物学应用和大规模RPI分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-RPI: predicting RNA-protein interactions via graph autoencoder and self-supervised learning strategies.

RNA-protein interactions (RPIs) are essential for many biological functions and are associated with various diseases. Traditional methods for detecting RPIs are labor-intensive and costly, necessitating efficient computational methods. In this study, we proposed a novel sequence-based RPI prediction framework based on graph neural networks (GNNs) that addressed key limitations of existing methods, such as inadequate feature integration and negative sample construction. Our method represented RNAs and proteins as nodes in a unified interaction graph, enhancing the representation of RPI pairs through multi-feature fusion and employing self-supervised learning strategies for model training. The model's performance was validated through five-fold cross-validation, achieving accuracy of 0.880, 0.811, 0.950, 0.979, 0.910, and 0.924 on the RPI488, RPI369, RPI2241, RPI1807, RPI1446, and RPImerged datasets, respectively. Additionally, in cross-species generalization tests, our method outperformed existing methods, achieving an overall accuracy of 0.989 across 10 093 RPI pairs. Compared with other state-of-the-art RPI prediction methods, our approach demonstrates greater robustness and stability in RPI prediction, highlighting its potential for broad biological applications and large-scale RPI analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信