{"title":"图- rpi:通过图自编码器和自监督学习策略预测rna -蛋白质相互作用。","authors":"Jiahui Guan, Lantian Yao, Peilin Xie, Zhihao Zhao, Dian Meng, Tzong-Yi Lee, Junwen Wang, Ying-Chih Chiang","doi":"10.1093/bib/bbaf292","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-protein interactions (RPIs) are essential for many biological functions and are associated with various diseases. Traditional methods for detecting RPIs are labor-intensive and costly, necessitating efficient computational methods. In this study, we proposed a novel sequence-based RPI prediction framework based on graph neural networks (GNNs) that addressed key limitations of existing methods, such as inadequate feature integration and negative sample construction. Our method represented RNAs and proteins as nodes in a unified interaction graph, enhancing the representation of RPI pairs through multi-feature fusion and employing self-supervised learning strategies for model training. The model's performance was validated through five-fold cross-validation, achieving accuracy of 0.880, 0.811, 0.950, 0.979, 0.910, and 0.924 on the RPI488, RPI369, RPI2241, RPI1807, RPI1446, and RPImerged datasets, respectively. Additionally, in cross-species generalization tests, our method outperformed existing methods, achieving an overall accuracy of 0.989 across 10 093 RPI pairs. Compared with other state-of-the-art RPI prediction methods, our approach demonstrates greater robustness and stability in RPI prediction, highlighting its potential for broad biological applications and large-scale RPI analysis.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Graph-RPI: predicting RNA-protein interactions via graph autoencoder and self-supervised learning strategies.\",\"authors\":\"Jiahui Guan, Lantian Yao, Peilin Xie, Zhihao Zhao, Dian Meng, Tzong-Yi Lee, Junwen Wang, Ying-Chih Chiang\",\"doi\":\"10.1093/bib/bbaf292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA-protein interactions (RPIs) are essential for many biological functions and are associated with various diseases. Traditional methods for detecting RPIs are labor-intensive and costly, necessitating efficient computational methods. In this study, we proposed a novel sequence-based RPI prediction framework based on graph neural networks (GNNs) that addressed key limitations of existing methods, such as inadequate feature integration and negative sample construction. Our method represented RNAs and proteins as nodes in a unified interaction graph, enhancing the representation of RPI pairs through multi-feature fusion and employing self-supervised learning strategies for model training. The model's performance was validated through five-fold cross-validation, achieving accuracy of 0.880, 0.811, 0.950, 0.979, 0.910, and 0.924 on the RPI488, RPI369, RPI2241, RPI1807, RPI1446, and RPImerged datasets, respectively. Additionally, in cross-species generalization tests, our method outperformed existing methods, achieving an overall accuracy of 0.989 across 10 093 RPI pairs. Compared with other state-of-the-art RPI prediction methods, our approach demonstrates greater robustness and stability in RPI prediction, highlighting its potential for broad biological applications and large-scale RPI analysis.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf292\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf292","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Graph-RPI: predicting RNA-protein interactions via graph autoencoder and self-supervised learning strategies.
RNA-protein interactions (RPIs) are essential for many biological functions and are associated with various diseases. Traditional methods for detecting RPIs are labor-intensive and costly, necessitating efficient computational methods. In this study, we proposed a novel sequence-based RPI prediction framework based on graph neural networks (GNNs) that addressed key limitations of existing methods, such as inadequate feature integration and negative sample construction. Our method represented RNAs and proteins as nodes in a unified interaction graph, enhancing the representation of RPI pairs through multi-feature fusion and employing self-supervised learning strategies for model training. The model's performance was validated through five-fold cross-validation, achieving accuracy of 0.880, 0.811, 0.950, 0.979, 0.910, and 0.924 on the RPI488, RPI369, RPI2241, RPI1807, RPI1446, and RPImerged datasets, respectively. Additionally, in cross-species generalization tests, our method outperformed existing methods, achieving an overall accuracy of 0.989 across 10 093 RPI pairs. Compared with other state-of-the-art RPI prediction methods, our approach demonstrates greater robustness and stability in RPI prediction, highlighting its potential for broad biological applications and large-scale RPI analysis.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.