{"title":"FH-2001是一种具有免疫调节活性的新型FGFR/VEGFR双抑制剂。","authors":"Aiguo Liu, Longfei Huang, Xin Gao, Lei Liu, Xiang Li, Xiaohong Yu, Chunyan Zhao","doi":"10.1097/CAD.0000000000001743","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple cancers are driven by aberrant fibroblast growth factor receptor (FGFR) signaling and vascular endothelial growth factor receptor (VEGFR)-linked angiogenesis. Several therapeutic agents targeting FGFR and VEGFR have been developed and approved for use in solid cancers; however, there is still a high unmet medical need for new agents that have a more powerful antitumor activity and a broader antitumor spectrum. Here, we report the discovery of FH-2001, a novel and potent FGFR/VEGFR dual inhibitor, with additional activity of modulating programmed cell death ligand 1 (PD-L1) gene expression. In biochemical assays, FH-2001 showed potent inhibition of FGFR1, 2, 3, and 4, with half-maximal inhibitory concentration (IC 50 ) of 0.2, 0.2, 0.4, and 2.0 nM, respectively, and VEGFR1, 2, and 3, with IC 50 values of 2.0, 0.3, and 0.5 nM, respectively. FH-2001 significantly suppressed the cell growth of FGFR- or VEGFR-driven cancer cell lines. In representative cell line- and patient-derived tumor xenografts with aberrant FGFR or VEGFR signaling, FH-2001 substantially inhibited tumor growth. Furthermore, FH-2001 demonstrated marked antitumor activities when treated alone or combined with PD-L1 or PD-1 antibody in syngeneic mouse models. Flow cytometric analysis revealed that FH-2001 alone or in combination with anti-PD-L1 increased T and natural killer cells and decreased myeloid cells in the tumor microenvironment. Mechanistically, FH-2001 treatment dramatically reduced c-Myc and PD-L1 mRNA and protein levels in a dose-dependent manner in vitro . Taken together, FH-2001 is a promising dual-target inhibitor of FGFR and VEGFR and also modulates cancer immunity, while its robust antitumor activity positions it as a potentially class-leading anticancer agent.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":"703-710"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FH-2001 is a novel FGFR/VEGFR dual inhibitor with immune-modulating activity.\",\"authors\":\"Aiguo Liu, Longfei Huang, Xin Gao, Lei Liu, Xiang Li, Xiaohong Yu, Chunyan Zhao\",\"doi\":\"10.1097/CAD.0000000000001743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple cancers are driven by aberrant fibroblast growth factor receptor (FGFR) signaling and vascular endothelial growth factor receptor (VEGFR)-linked angiogenesis. Several therapeutic agents targeting FGFR and VEGFR have been developed and approved for use in solid cancers; however, there is still a high unmet medical need for new agents that have a more powerful antitumor activity and a broader antitumor spectrum. Here, we report the discovery of FH-2001, a novel and potent FGFR/VEGFR dual inhibitor, with additional activity of modulating programmed cell death ligand 1 (PD-L1) gene expression. In biochemical assays, FH-2001 showed potent inhibition of FGFR1, 2, 3, and 4, with half-maximal inhibitory concentration (IC 50 ) of 0.2, 0.2, 0.4, and 2.0 nM, respectively, and VEGFR1, 2, and 3, with IC 50 values of 2.0, 0.3, and 0.5 nM, respectively. FH-2001 significantly suppressed the cell growth of FGFR- or VEGFR-driven cancer cell lines. In representative cell line- and patient-derived tumor xenografts with aberrant FGFR or VEGFR signaling, FH-2001 substantially inhibited tumor growth. Furthermore, FH-2001 demonstrated marked antitumor activities when treated alone or combined with PD-L1 or PD-1 antibody in syngeneic mouse models. Flow cytometric analysis revealed that FH-2001 alone or in combination with anti-PD-L1 increased T and natural killer cells and decreased myeloid cells in the tumor microenvironment. Mechanistically, FH-2001 treatment dramatically reduced c-Myc and PD-L1 mRNA and protein levels in a dose-dependent manner in vitro . Taken together, FH-2001 is a promising dual-target inhibitor of FGFR and VEGFR and also modulates cancer immunity, while its robust antitumor activity positions it as a potentially class-leading anticancer agent.</p>\",\"PeriodicalId\":7969,\"journal\":{\"name\":\"Anti-Cancer Drugs\",\"volume\":\" \",\"pages\":\"703-710\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-Cancer Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CAD.0000000000001743\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001743","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
FH-2001 is a novel FGFR/VEGFR dual inhibitor with immune-modulating activity.
Multiple cancers are driven by aberrant fibroblast growth factor receptor (FGFR) signaling and vascular endothelial growth factor receptor (VEGFR)-linked angiogenesis. Several therapeutic agents targeting FGFR and VEGFR have been developed and approved for use in solid cancers; however, there is still a high unmet medical need for new agents that have a more powerful antitumor activity and a broader antitumor spectrum. Here, we report the discovery of FH-2001, a novel and potent FGFR/VEGFR dual inhibitor, with additional activity of modulating programmed cell death ligand 1 (PD-L1) gene expression. In biochemical assays, FH-2001 showed potent inhibition of FGFR1, 2, 3, and 4, with half-maximal inhibitory concentration (IC 50 ) of 0.2, 0.2, 0.4, and 2.0 nM, respectively, and VEGFR1, 2, and 3, with IC 50 values of 2.0, 0.3, and 0.5 nM, respectively. FH-2001 significantly suppressed the cell growth of FGFR- or VEGFR-driven cancer cell lines. In representative cell line- and patient-derived tumor xenografts with aberrant FGFR or VEGFR signaling, FH-2001 substantially inhibited tumor growth. Furthermore, FH-2001 demonstrated marked antitumor activities when treated alone or combined with PD-L1 or PD-1 antibody in syngeneic mouse models. Flow cytometric analysis revealed that FH-2001 alone or in combination with anti-PD-L1 increased T and natural killer cells and decreased myeloid cells in the tumor microenvironment. Mechanistically, FH-2001 treatment dramatically reduced c-Myc and PD-L1 mRNA and protein levels in a dose-dependent manner in vitro . Taken together, FH-2001 is a promising dual-target inhibitor of FGFR and VEGFR and also modulates cancer immunity, while its robust antitumor activity positions it as a potentially class-leading anticancer agent.
期刊介绍:
Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.